Side-Channel and Fault Attacks
in
Modern Lattice-Based Cryptography

Julius Hermelink

Max Planck Institute for Security and Privacy



Years at Infineon

It has been more than 10 years since | started at Infineon ©

- 2014-2020: Studying mathematics.
- 2014: Started at Infineon at DES.

- 2018: Switched to CCS/Thomas
Poppelmann.

- 2020: Begin of PhD in cooperation
with UniBW M.

- 2023: Started at MPI-SP in Bochum
- 2024: Finished PhD
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The Quantum Threat

Quantum computers threaten currently used asymmetric cryptography.

We have to assume that:

- Large-scale quantum computer break
commonly used asymmetric schemes.

- Adversaries: harvest now, decrypt later.

IBM Research, https://www.flickr.com/photos/ibm_research_zurich/51248690716/, unmodified, license: CC BY 2.0 (https://creativecomnons. org/Licenses/by/2.6/
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The Quantum Threat

Quantum computers threaten currently used asymmetric cryptography.

We have to assume that:
- Large-scale quantum computer break
commonly used asymmetric schemes.

- Adversaries: harvest now, decrypt later.

Therefore, we need:
- Post-quantum asymmetric cryptography.

- Most pressingly key exchanges.

IBM Research, https://www.flickr.com/photos/ibm_research_zurich/51248690716/, unmodified, license: CC BY 2.0 (https://creativecommons. org/Licenses/by/2.6/
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The NIST Standardization Process

NIST is in the process of standardizing post-quantum cryptography.

1 FIPS 203 (Draft) NIST started a standardization process in 2016.

2 Federal Information Processing Standards Publication
a

- Fourth round ongoing.

+ Module-Lattice-based
s Key-Encapsulation
« Mechanism Standard

- Four candidates already selected.

- Three are lattice-based.

NIST draft standard, https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.1ipd.pdf, accessed 16/02/2024.

- Kyber selected as KEM (Kyber — ML-KEM).
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The NIST Standardization Process

NIST is in the process of standardizing post-quantum cryptography.

1 FIPS 203 (Draft) NIST started a standardization process in 2016.

2 Federal Information Processing Standards Publication
a

. Module-Lattice-based - Fourth round ongoing.
s Key-Encapsulation
« Mechanism Standard

- Four candidates already selected.

- Three are lattice-based.

- Kyber selected as KEM (Kyber — ML-KEM).

ML-KEM used in Signal, Chrome, iMessage, ...

@ U

NIST draft standard, https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.1ipd.pdf, accessed 16/02/2024; applications: see [Aut23, Kre23, EA24].
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Attacks on Embedded Devices

Embedded devices may be vulnerable to side-channel and fault attacks.
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Side-Channel Attacks on LBC

Lattice-Based Cryptography uses different building blocks.

- Different underlying hard problems.
- Different multiplications (e.g., using number theoretic transforms).
- Error correction to recover message from noisy coefficients.

- Construction from PKE using FO-transforms to achieve IND-CCA security.
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Side-Channel Attacks on LBC

Lattice-Based Cryptography uses different building blocks.

- Different underlying hard problems.
- Different multiplications (e.g., using number theoretic transforms).
- Error correction to recover message from noisy coefficients.

- Construction from PKE using FO-transforms to achieve IND-CCA security.

Which new vulnerabilities in regard to side-channel and fault attacks does this open up?
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The NTT

The number theoretic transform (NTT):

- Enables fast multiplication in several lattice-based schemes.

- Used at multiple points in all routines of ML-KEM.

- Inverse NTT processes data depending on the secret key during decryption.
- Previous work established (inverse) NTT as target for side-channel attacks.

- However, required noise levels limit attacks when targeting secret key.
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The NTT

The number theoretic transform (NTT):

- Enables fast multiplication in several lattice-based schemes.

- Used at multiple points in all routines of ML-KEM.

- Inverse NTT processes data depending on the secret key during decryption.
- Previous work established (inverse) NTT as target for side-channel attacks.

- However, required noise levels limit attacks when targeting secret key.

To what extent is the number theoretic transform vulnerable to
side-channel analysis?
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Chosen-Ciphertext k-Trace Attacks - Idea

Previous work [PPM17, PP19]:
@ Target of the attack

- Template attack on inv. NTT, then belief
; p propagation.

(w,v)! . .
o subtract ,' - However, cannot target secret key with high
noise tolerance.

[Decompress] [ Inv. NTT ] [ Decode ]

[ NTT ]—»[ Multiply }—@
®
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Chosen-Ciphertext k-Trace Attacks - Idea

Previous work [PPM17, PP19]:
@ Target of the attack

- Template attack on inv. NTT, then belief
; propagation.

| g _—
/@ K - However, cannot target secret key with high

noise tolerance.

,/'[Decompress] Comenrr J - (Coecose ] Decryption as shown on the left:

'

: f - Ciphertext components are decompressed.
o [ NTT |——4[ Multiply ]«4<::) I ) o A

) 3 3 1 - Component is multiplied with secret.

N , 0 : ] ] '
AP « multiplied with sk @ - Results fed into the inv. number theoretic

transform.

Attack strategy: Reduce entropy using compressible NTT-sparse chosen ciphertext.

7119



Chosen-Ciphertext k-Trace Attacks

Our attack strategy for increased noise tolerance:

For targeted subkeys:
- Formulate as lattice
problem.
- Run lattice reduction.

- Obtain compressible
NTT-sparse ct.

Lattice reduction is computationally expensive and slow but done offline.

Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska,
k-Trace Attacks on Masked CCA2 Secure Kyber”. In: IACR Transactions

Strieder, and Christine van Vredendaal. “Chosen Ciphertext

5 20214 (2021), pp. 88-113
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sen-Ciphertext k-Trace Attacks

Our attack strategy for increased noise tolerance:

For targeted subkeys: For each ct:
- Formulate as lattice - Record trace for ct.
problem. - Obtain distributions for
- Run lattice reduction. intermediates.
- Obtain compressible - Run belief propagation;
NTT-sparse ct. obtain subkeys.

Lattice reduction is computationally expensive and slow but done offline.

rieder, and Christine van Vredendaal. “Chosen Ciphertext

20214 (2021), pp. 88-113

Mike Hamburg, Julius Hermelink, Robert Primas, Simona Sama:
k-Trace Attacks on Masked CCA2 Secure Kyber”. In: IACR Transa:
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Chosen-Ciphertext k-Trace Attacks

Our attack strategy for increased noise tolerance:

For targeted subkeys: For each ct: Using the subkeys:
- Formulate as lattice - Record trace for ct. - Formulate key recovery
problem. - @A dfsibuiiems wr using subkeys as lattice
- Run lattice reduction. intermediates. problem.
- Obtain compressible - Run belief propagation; * Run lattice reduction.
NTT-sparse ct. obtain subkeys. - Obtain full key.

Lattice reduction is computationally expensive and slow but done offline.

Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska, Thomas Schamberger Silvan Streit, Emanuele Strieder, and Christine van Vredendaal. “Chosen Ciphertext
k-Trace Attacks on Masked CCA2 Secure Kyber”. In: IACR Transactions on Cry iware and Embedded Systems 20214 (2021), pp. 88-113
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Adapting Belief Propagation to Counter Shuffling of NTTs

Real-world attacks have to take countermeasures into account.

Important classes of countermeasures:
- Masking circumvented.

- Hiding prevents these attacks.

uele Strieder, and Katharina Thieme. “Adapting Belief Propagation to Counter Shuffling of NTTs". In: IACR Transactions on Cryptographic
0231 (2023), pp. 60-88
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Adapting Belief Propagation to Counter Shuffling of NTTs

Real-world attacks have to take countermeasures into account.

Important classes of countermeasures:
- Masking circumvented.

- Hiding prevents these attacks.

Ravi et al. [RPBC20] (ascending security):
- Fine shuffling
- Coarse block shuffling
- Coarse full shuffling

Julius Hermelink, Silvan Streit, Emanuele Strieder, and Katharina Thieme. “Adapting Belief Propagation to Counter Shuffling of NTTs”. In: IACR Transactions on Cryptographic

Hardware and Embedded Systems 202311 (2023), pp. 60-88
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Adapting Belief Propagation to Counter Shuffling of NTTs

Real-world attacks have to take countermeasures into account.

Important classes of countermeasures:

- Masking circumvented. . . -
We propose two techniques against hiding:

- Hidi ts th ttacks. . .
'aing prevents these attacks - Fine shuffling: Shuffle node adapts factor

Ravi et al. [RPBC20] (ascending security): depending on processed information.

- Fine shuffling - Coarse shuffling: Extended attacker model

- Goase blodk g and matching algorithm.

- Coarse full shuffling

Adaptation to hiding countermeasures for belief-propagation-based attacks.

Julius Hermelink, Silvan Streit, Emanuele Strieder, and Katharina Thieme. “Adapting Belief Propagation to Counter Shuffling of NTTs”. In: IACR Transactions on Cryptographic
Hardware and Embedded Systems 202311 (2023), pp. 60-88
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Chosen-Ciphertext k-Trace Attacks - Results

Evaluation in the leakage models provided by previous work [PPM17, PP19].

Success Rate per Measurement Noise
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Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska, Thomas Schamberger Silvan Streit, Emanuele Strieder, and Christine van Vredendaal. “Chosen Ciphertext
k-Trace Attacks on Masked CCA2 Secure Kyber”. s r 520214 (2021), pp. 88
Julius Hermelink, Silvan Streit, Emanuete Strieder, and Katharma Thieme. “Adapting BeUef Propagation to Counter Shuffling of NTTs". In

Hardware and Embedded
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Chosen-Ciphertext k-Trace Attacks - Results

Evaluation in the leakage models provided by previous work [PPM17, PP19].

Success Rate per Measurement Noise
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Noise tolerance increased from o < 0.6to o < 1.7 (¢ < 3.1).

Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska, Thomas Schamberger Silvan Streit, Emanuele Strieder, and Ch stme van Vredendaal. “Chosen Ciphertext
k-Trace Attacks on Masked CCA2 Secure Kyber". In: IACR Transactions on Cryptographic Systems 20214 (20

Julius Hermelink, Silvan Slren Emanuele Strieder, and Katharma Th\eme “Adapting BeUef Propaganon to Counter Shuffling of NTTs". In
Hardware and Embedded
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Targeting the FO-Transform

Learning with errors schemes recover the message from noisy coefficients:
- Observation whether introduced error causes failure: leaks information.
- Fujisaki-Okamoto (FO) transform achieves IND-CCA2 security.
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Targeting the FO-Transform

Learning with errors schemes recover the message from noisy coefficients:
- Observation whether introduced error causes failure: leaks information.
- Fujisaki-Okamoto (FO) transform achieves IND-CCA2 security.

Previous attacks:
- CCA to potentially cause failure; observe using SCA on comparison [GJN20, BDHT21].
- Or use fault against decoder to potentially cause failure and observe outcome [PP21].

- Require insufficiently protected comparison/decoder; reliable fault.
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Fault-Enabled Chosen-Ciphertext Attacks

Introduce error through chosen ciphertext, then correct with fault.

Our attack strategy:

_- Encrypt m to ct; add [$] in coeff. 0

@ __-- Fault ct’ back to ct

fault

|
@ [re—emcrypt] [ compare ]

Da— [Faaamecon

but compares agamst ct

(—1)°*s(rTe —s"(e; + Au) + e, + Av) <0
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Introduce error through chosen ciphertext, then correct with fault.
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Fault-Enabled Chosen-Ciphertext Attacks

Introduce error through chosen ciphertext, then correct with fault.

Our attack strategy:

_- Encrypt m to ct; add [$] in coeff. 0

@ .-~ Fault et/ back toct - Ciphertext introduces error; fault corrects.

fault

|
\ store
@ [re—emcrypt] [ compare ]

- Device decrypts ct’, but compares to ct.

- FO-comparison gives dec. failure oracle.

-+ Success can only occur if fault works.
fm - Allows for unreliable fault; attack surface
SRR C;mpa,es sgainst ot over most of the execution time; may only
target public data.
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Fault-Enabled Chosen-Ciphertext Attacks — BP

We propose solving decryption failure inequalities using belief propagation.

secrets
S

Belief propagation inspired by [PP21]:
- Check nodes represent inequalities.

- Variable nodes represent unknown
coefficients.

- Priors are binomial distributions of
i secrets.

Represent unknown key coefficients

Requires fewer inequalities while being more computationally efficient.

Julius Hermelink, Peter Pessl, and Thomas Poppelmann. “Fault-Enabled Chosen-Ciphertext Attacks on Kyber”. In: P n Cryptology
Cor ogy in India, Jaipur, India, December 12-15, 2021, Proceedings. Ed. by Avishek Adhikari, Ralf Kisters, and Bart Preneel. Vo

Science. S o, 1, pp. 311-334
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Fault-Enabled Chosen-Ciphertext Attacks — Results

Gives a more general class of attacks resulting from our method.

Success Rate per Number of Faults
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Fault-Enabled Chosen-Ciphertext Attacks — Results

Gives a more general class of attacks resulting from our method.

Success Rate per Number of Faults
Point of Attack ~ Requirement/Robustness
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Julius Hermelink, Peter Pessl, and Thomas Poppelmann. “Fault-Enabled Chosen-Ciphertext Attacks on Kyber”. In: Prc 0:
India, December 12-15, 2021, Proceedings. Ed. by Avishek Adhikari, Ralf Kiisters, and Bar1 3. Lecture N
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Key Recovery from Decryption Failure Inequalities

Decryption failures leak information in form
of inequalities:

- Exploited in wide variety of attacks
including ours.
- Particularly hard to mitigate.

- Our attack strategy improved by [Del22],
further enlarged attack surface.
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Decryption failures leak information in form Attacks require recovery method to solve for
of inequalities: secret key:
- Exploited in wide variety of attacks - Partial information not considered; no
including ours. security estimates.
- Particularly hard to mitigate. - Error resistance increases #inequalities.
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Key Recovery from Decryption Failure Inequalities

Decryption failures leak information in form Attacks require recovery method to solve for
of inequalities: secret key:
- Exploited in wide variety of attacks - Partial information not considered; no
including ours. security estimates.
- Particularly hard to mitigate. - Error resistance increases #inequalities.
- Our attack strategy improved by [Del22], - General problem: combine belief
further enlarged attack surface. propagation and algebraic methods?

Which techniques allow for key recovery from partially leaked decryption
failure information?

15/19



Security Estimates for Error-Tolerant Key Recovery

Decryption failures in LWE leak information in form of inequalities.

Several methods to obtain secret from inequalities exist:

Method Inequalities  Error Resistant Estimates
Pessl and Prokop [PP21] 8000 No No

1 Used for key recovery from such decryption failure information on widely available hardware in a concrete attack.
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Method Inequalities  Error Resistant Estimates
Pessl and Prokop [PP21] 8000 No No
Hermelink et al. [HPP21] 5750 No No
Delvaux [Del22] 9000 Yes No

1 Used for key recovery from such decryption failure information on widely available hardware in a concrete attack.
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Security Estimates for Error-Tolerant Key Recovery

Decryption failures in LWE leak information in form of inequalities.

Several methods to obtain secret from inequalities exist:

Method Inequalities  Error Resistant Estimates
Pessl and Prokop [PP21] 8000 No No
Hermelink et al. [HPP21] 5750 No No
Delvaux [Del22] 9000 Yes No
Dachman-Soled et al. [DDGR20, DGHK22] > 10000 No Yes

How can we combine the advantages of previous methods?

1 Used for key recovery from such decryption failure information on widely available hardware in a concrete attack.
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Security Estimates for Error-Tolerant Key Recovery

New error-tolerant belief propagation with two-step lattice integration:

With probability p;:

1 (e Tl -0 e+ a0 <0
‘ |

( Attack Integration]

|

Julius Hermelink, Erik Martensson, Simona Samardjiska, Peter Pessl, and Gabi Dreo Rodosek. “Belief Propagation Meets Lattice Reduction: Security Estimates for Error-Tolerant Key
Recovery from Decryption Errors”. In: IACR Trans: 20234 (2023), pp. 287-317

n Cryptographic Hardware and
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Security Estimates for Error-Tolerant Key Recov

New error-tolerant belief propagation with two-step lattice integration:
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Julius Hermelink, Erik Martensson, Simona Samardjiska, Peter Pessl, and Gabi Dreo Rodosek. “Belief Propagation Meets Lattice Reduction: Security Estimates for Error-Tolerant Key
Recovery from Decryption Errors”. In: IACR Trans: 20234 (2023), pp. 287-317

n Cryptographic Hardware and
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Security Estimates for Error-Tolerant Key Recov

New error-tolerant belief propagation with two-step lattice integration:
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Julius Hermelink, Erik Martensson, Simona Samardjiska, Peter Pessl, and Gabi Dreo Rodosek. “Belief Propagation Meets Lattice Reduction: Security Estimates for Error-Tolerant Key
Recovery from Decryption Errors”. In: IACR Trans: 20234 (2023), pp. 287-317

n Cryptographic Hardware and
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Security Estimates for Error-Tolerant Key Recovery

Security Level per Number of Inequalities
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Hybrid approach: fewer inequalities, error-tolerant, and provides security estimates.

Julius Hermelink, Erik Martensson, Simona Samardjiska, Peter Pessl, and Gabi Dreo Rodosek. “Belief Propagation Meets Lattice Reduction: Security Estimates for Error-Tolerant Key
Recovery from Decryption Errors”. In: IACR Tran

ons on Cryptographic Hardware and

ded Systems 20234 (2023), pp.

287-317
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Security Estimates for Error-Tolerant Key Recovery

Security Level per Number of Inequalities
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Hybrid approach: fewer inequalities, error-tolerant, and provides security estimates.

Julius Hermelink, Erik Martensson, Simona Samardjiska, Peter Pessl, and Gabi Dreo Rodosek. “Belief Propagation Meets Lattice Reduction: Security Estimates for Error-Tolerant Key
Recovery from Decryption Errors”. In: IACR Tran
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Contributions
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Our work provides:
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Contributions

NIST has standardized ML-KEM - a lattice-based scheme.

Our work provides:

- Improvement on the state of the art in side-channel and fault attacks on
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Several hiding countermeasures can be circumvented; protected NTT still vulnerable.
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