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The Quantum Threat

Quantum computers threaten currently used asymmetric cryptography.

We have to assume that:

• Large-scale quantum computer break
commonly used asymmetric schemes.

• Adversaries: harvest now, decrypt later.

Therefore, we need:

• Post-quantum asymmetric cryptography.

• Most pressingly key exchanges.

IBM Research, https://www.flickr.com/photos/ibm_research_zurich/51248690716/, unmodified, license: CC BY 2.0 (https://creativecommons.org/licenses/by/2.0/)
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The NIST Standardization Process

NIST is in the process of standardizing post-quantum cryptography.

NIST started a standardization process in 2016.

• Fourth round ongoing.

• Four candidates already selected.

• Three are lattice-based.

• Kyber selected as KEM (Kyber 7→ ML-KEM).

ML-KEM used in Signal, Chrome, iMessage, …

NIST draft standard, https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.ipd.pdf, accessed 16/02/2024.

3 / 19

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.ipd.pdf


The NIST Standardization Process

NIST is in the process of standardizing post-quantum cryptography.

NIST started a standardization process in 2016.

• Fourth round ongoing.

• Four candidates already selected.

• Three are lattice-based.

• Kyber selected as KEM (Kyber 7→ ML-KEM).

ML-KEM used in Signal, Chrome, iMessage, …

NIST draft standard, https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.ipd.pdf, accessed 16/02/2024; applications: see [Aut23, Kre23, EA24].

3 / 19

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.ipd.pdf


Attacks on Embedded Devices

Embedded devices may be vulnerable to side-channel and fault attacks.
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Side-Channel Attacks on LBC

Lattice-Based Cryptography uses different building blocks.

• Different underlying hard problems.
• Different multiplications (e.g., using number theoretic transforms).
• Error correction to recover message from noisy coefficients.
• Construction from PKE using FO-transforms to achieve IND-CCA security.
• …

Which new vulnerabilities in regard to side-channel and fault attacks does this open up?
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The NTT

The number theoretic transform (NTT):

• Enables fast multiplication in several lattice-based schemes.
• Used at multiple points in all routines of ML-KEM.
• Inverse NTT processes data depending on the secret key during decryption.
• Previous work established (inverse) NTT as target for side-channel attacks.
• However, required noise levels limit attacks when targeting secret key.

To what extent is the number theoretic transform vulnerable to
side-channel analysis?
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Chosen-Ciphertext k-Trace Attacks – Idea

ct

Decompress

NTT Multiply sk

Inv. NTT

Subtract

Decode

m

(u, v)

Target of the attack

transform u u multiplied with sk

Previous work [PPM17, PP19]:

• Template attack on inv. NTT; then belief
propagation.

• However, cannot target secret key with high
noise tolerance.

Decryption as shown on the left:

• Ciphertext components are decompressed.

• Component is multiplied with secret.

• Results fed into the inv. number theoretic
transform.

Attack strategy: Reduce entropy using compressible NTT-sparse chosen ciphertext.
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Chosen-Ciphertext k-Trace Attacks

Our attack strategy for increased noise tolerance:

For targeted subkeys:

• Formulate as lattice
problem.

• Run lattice reduction.

• Obtain compressible
NTT-sparse ct.

For each ct:

• Record trace for ct.

• Obtain distributions for
intermediates.

• Run belief propagation;
obtain subkeys.

Using the subkeys:

• Formulate key recovery
using subkeys as lattice
problem.

• Run lattice reduction.

• Obtain full key.

Lattice reduction is computationally expensive and slow but done offline.

Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska, Thomas Schamberger, Silvan Streit, Emanuele Strieder, and Christine van Vredendaal. “Chosen Ciphertext
k-Trace Attacks on Masked CCA2 Secure Kyber”. In: IACR Transactions on Cryptographic Hardware and Embedded Systems 2021.4 (2021), pp. 88–113
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Adapting Belief Propagation to Counter Shuffling of NTTs

Real-world attacks have to take countermeasures into account.

Important classes of countermeasures:

• Masking circumvented.

• Hiding prevents these attacks.

Ravi et al. [RPBC20] (ascending security):

• Fine shuffling

• Coarse block shuffling

• Coarse full shuffling

We propose two techniques against hiding:

• Fine shuffling: Shuffle node adapts factor
depending on processed information.

• Coarse shuffling: Extended attacker model
and matching algorithm.

Adaptation to hiding countermeasures for belief-propagation-based attacks.

Julius Hermelink, Silvan Streit, Emanuele Strieder, and Katharina Thieme. “Adapting Belief Propagation to Counter Shuffling of NTTs”. In: IACR Transactions on Cryptographic
Hardware and Embedded Systems 2023.1 (2023), pp. 60–88
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Chosen-Ciphertext k-Trace Attacks – Results

Evaluation in the leakage models provided by previous work [PPM17, PP19].
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Targeting the FO-Transform

Learning with errors schemes recover the message from noisy coefficients:
• Observation whether introduced error causes failure: leaks information.
• Fujisaki-Okamoto (FO) transform achieves IND-CCA2 security.

Previous attacks:
• CCA to potentially cause failure; observe using SCA on comparison [GJN20, BDH+21].
• Or use fault against decoder to potentially cause failure and observe outcome [PP21].
• Require insufficiently protected comparison/decoder; reliable fault.
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Fault-Enabled Chosen-Ciphertext Attacks

Introduce error through chosen ciphertext, then correct with fault.

ct′

store

decrypt

re-encrypt compare

K

abort

ct′

observe

fault

incoming

connection reject connection
Decrypts ct′ . . .

…but compares against ct

Encrypt m to ct; add
⌈ q
4

⌋
in coeff. 0

Fault ct′ back to ct

(−1)obs(r>e − s>(e1 +∆u) + e2 +∆v) ≤ 0

secrets

Our attack strategy:

• Ciphertext introduces error; fault corrects.

• Device decrypts ct′, but compares to ct.

• FO-comparison gives dec. failure oracle.

• Success can only occur if fault works.

• Allows for unreliable fault; attack surface
over most of the execution time; may only
target public data.

Julius Hermelink, Peter Pessl, and Thomas Pöppelmann. “Fault-Enabled Chosen-Ciphertext Attacks on Kyber”. In: Progress in Cryptology - INDOCRYPT 2021 - 22nd International
Conference on Cryptology in India, Jaipur, India, December 12-15 , 2021, Proceedings. Ed. by Avishek Adhikari, Ralf Küsters, and Bart Preneel. Vol. 13143. Lecture Notes in Computer
Science. Springer, 2021, pp. 311–334 12 / 19
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Fault-Enabled Chosen-Ciphertext Attacks – BP

We propose solving decryption failure inequalities using belief propagation.

x0 x1 x2 x3 x4

Check 0 Check 1

Represent unknown key coefficients

(−1)obs(r>e − s>(e1 +∆u) + e2 +∆v) ≤ 0

secrets

Belief propagation inspired by [PP21]:
• Check nodes represent inequalities.
• Variable nodes represent unknown
coefficients.

• Priors are binomial distributions of
secrets.

Requires fewer inequalities while being more computationally efficient.

Julius Hermelink, Peter Pessl, and Thomas Pöppelmann. “Fault-Enabled Chosen-Ciphertext Attacks on Kyber”. In: Progress in Cryptology - INDOCRYPT 2021 - 22nd International
Conference on Cryptology in India, Jaipur, India, December 12-15 , 2021, Proceedings. Ed. by Avishek Adhikari, Ralf Küsters, and Bart Preneel. Vol. 13143. Lecture Notes in Computer
Science. Springer, 2021, pp. 311–334
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Fault-Enabled Chosen-Ciphertext Attacks – Results

Gives a more general class of attacks resulting from our method.
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[GJN20] Timing Comparison Non-constant time
[BDH+21] SCA Comparison Leaking comparison
[PP21] Fault Decoding Unprotected decoding
[DHP+22] SCA Comparison Max. first order protection
[Del22] Fault Multiple Unreliable/Imprecise fault
[Wei22] SCA/ML Multiple Defeats 1th order masking
[FKK+22] Rowhammer Key Generation KeyGen Failure Boosting

This work [HPP21] Fault Multiple Unreliable fault

Allows for very unreliable fault, enlarges attack surface, only targets public data.
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Key Recovery from Decryption Failure Inequalities

Decryption failures leak information in form
of inequalities:

• Exploited in wide variety of attacks
including ours.

• Particularly hard to mitigate.
• Our attack strategy improved by [Del22],
further enlarged attack surface.

Attacks require recovery method to solve for
secret key:

• Partial information not considered; no
security estimates.

• Error resistance increases #inequalities.
• General problem: combine belief
propagation and algebraic methods?

Which techniques allow for key recovery from partially leaked decryption
failure information?
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Security Estimates for Error-Tolerant Key Recovery

Decryption failures in LWE leak information in form of inequalities.

Several methods to obtain secret from inequalities exist:

Method Inequalities Error Resistant Estimates
Pessl and Prokop [PP21] 8000 No No
Hermelink et al. [HPP21] 5750 No No

Delvaux [Del22] 9000 Yes No
Dachman-Soled et al. [DDGR20, DGHK22] ≥ 10000 No Yes

How can we combine the advantages of previous methods?

1 Used for key recovery from such decryption failure information on widely available hardware in a concrete attack.
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Security Estimates for Error-Tolerant Key Recovery

New error-tolerant belief propagation with two-step lattice integration:
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Contributions

NIST has standardized ML-KEM – a lattice-based scheme.

Our work provides:

• Improvement on the state of the art in side-channel and fault attacks on
lattice-based schemes.

• Attack strategies against lattice-based schemes enabling future attacks (e.g., [Del22]).
• Statistical and algebraic tools relevant to a variety of attacks (used, e.g., in [DHP+22]).
• Extended assessment on vulnerabilities of major building blocks of modern
lattice-based key encapsulation mechanisms.
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Adapting Belief Propagation – Results

Real-world attacks have to take countermeasures into account.
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Our results show that

• Attacks not fully prevented by hiding
countermeasures.

• However, noise tolerance reduced.

• Strongest from of shuffling protects requires
vast computational resources.

• Large-scale adversaries might even
circumvent coarse full shuffling.

Several hiding countermeasures can be circumvented; protected NTT still vulnerable.
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