Julius Hermelin

k1,2

Peter Pess|?

2
LUniversitit der Bundeswehr Miinchen

Thomas Poppelmann

2Infineon Technologies AG

«O> «Fr « =>»

<

DA



Preliminaries - Kyber

In this work, we present an attack on Kyber using the combination of a
chosen-ciphertext attack and a single-bit fault attack.

» Kyber is a CCA2-secure post-quantum KEM.

» Finalist in the NIST standardization process.

» Relies on the hardness of the MLWE problem (lattice-based).

» Three parameter sets: Kyber512, Kyber768, Kyber1024.

» Built from an underlying PKE using a variant of the FO-transform.
» Works in R = Fy[x]/(x" — 1) and RX.



Kyber - Decapsulation

decrypt

compare

(m)
-/

re-encrypt

During decryption, the message is recovered from the polynomial®

rec:m+eTr—sTe1+ez

= m + noise.

where e, s are secret, other terms are known to the attacker?.

!Coefficients in {0,...,q — 1}; lgnoring compression errors
2Vectors of polynomials in bold




0

» Encryption: 0-bits mapped to 0, 1-bits mapped to 7 (one bit to one coefficient).
» Decryption: Recover from rec = m + noise by mapping to 0 if closer to 0 than to
7, otherwise to 1.
» Upper half of the circle mapped to 0, lower half to 1.

/

ity

~lQ

nNlQ

DA



» Message is recovered from rec = m 4+ noise.

> Adding { to a coefficient of rec: Corresponding message bit might change
depending on which side the noisy message is on.

» Decryption error happens if noise coefficient is positive.

0
N

»g

~lQ

NlQ

«AO> A4F>r A=)r « =)

DA



» Adding 7 and observing decryption errors tells us if a coefficient of
noise =e'r — sTel + er.
is positive or negativeS.
» Gives inequalities involving secrets e, s.

0

N

»g

»la

3|gnoring compression errors

NlQ

«AO> A4F>r A=)r « =)

DA



Pessl and Prokop's attack

A recent fault attack by Pessl and Prokop takes advantage of decryption errors.

» Pessl and Prokop fault the decoder to cause the addition of %.
» From each fault/decapsulation: Recover one inequality.

» Solve inequalities by updating distributions of coefficients using obtained
inequalities.

Several limitations:

» Prevented by shuffling.
» Very specific fault model.

» Depends on the implementation.



Our attack

v

Send manipulated ciphertext ¢’ with 7 added to one coefficient of a valid
ciphertext c.

Device under attack obtains ¢” from re-encryption.
After decryption, fault one bit of stored ciphertext ¢’ to match c.

Thereby, the FO-transform effectivly compares ¢ against ¢”.

vvyyy

Observe decryption errors and obtain inequalities.

c compare

decrypt @ re-encrypt




Our attack

By introducing the fault
» The device decrypts ¢, which is ¢ with a Z-error added in one coefficient.

» Result of re-encryption ¢” is compared against ¢ (as ¢’ was corrected).

Two cases:
1. ¢’ causes decryption error = decrypt returns m’ # m = ¢” # c.

2. ¢’ causes no decryption error = decrypt returns m' = m = ¢’ = c.

c compare

decrypt @ re-encrypt




Fault location in time:
» After decrypt was called,

» and before the re-encryption comparison
Value to be faulted:

» Either the stored ciphertext,
» or the ciphertext obtained from re-encryption

Fault model: Set, reset, or flip a single bit.

«4O>» «Fr «=)>r <

DA



Solving inequalities using belief propagation

Using belief propagation needs 20-30% less faults and requires significantly less RAM.

» For each unknown coefficient of x (given by e and s), we initialise a variable node
with a prior given by the binomial distribition they were sampled from.

» For each inequality, we initialise a check node.




Advantages

Our approach: Instead of sending a valid ciphertext and then applying a fault, send
manipulated ciphertext and use a fault to correct.

Several advantages:
» Manipulation is performed offline, therefore observing successful decapsulation
means that the fault worked (even with unreliable faults).
» Not prevented by shuffling the decoder and several other countermeasures.
» Fault may be introduced at several places in time/memory over a very long
time-span.
» Less implementation specific.



Success rate

1.00

0.75 1

0.50 1

0.25

0.00

—>— Kyber512
—8— Kyber768
=»— Kyber1024

2000 3000

4000 5000 6000 7000

Number of inequalities

9000

DA



Perfomance - Runtime

Runtimes in minutes on a Intel(R) Xeon(R) Gold 6242 with 32 and 8 threads.

Parameter set Iterations 32 threads 8 threads
Kyber512 (6000 inequalities) 6.8 3.25 9.3
Kyber768 (7000 inequalities) 6.75 6.7 18.6

Kyber1024 (9000 inequalities) 9 16.9 39.25




Thank you for listening!



