
The Insecurity of Masked Comparisons:
SCAs on ML-KEM’s FO-Transform

Julius Hermelink1 Kai-Chun Ning1 Richard Petri1 Emanuele Strieder2,3

1Max Planck Institute for Security and Privacy

2Fraunhofer AISEC

3Technical University of Munich



Post-Quantum Cryptography

We are in the process of migrating to Post-Quantum Cryptography.

NIST started a standardization process in 2016.

• Fourth round ongoing.

• Four candidates already selected.

• Kyber selected as KEM (Kyber 7→ ML-KEM).

ML-KEM is already actively being used
• ML-KEM used in Signal, iMessage, …
• Available in Chrome, Firefox, …

We have to assume that usage on embedded devices will soon become widespread.

1 / 10



Post-Quantum Cryptography

We are in the process of migrating to Post-Quantum Cryptography.

NIST started a standardization process in 2016.

• Fourth round ongoing.

• Four candidates already selected.

• Kyber selected as KEM (Kyber 7→ ML-KEM).

ML-KEM is already actively being used
• ML-KEM used in Signal, iMessage, …
• Available in Chrome, Firefox, …

We have to assume that usage on embedded devices will soon become widespread.

1 / 10



Post-Quantum Cryptography

We are in the process of migrating to Post-Quantum Cryptography.

NIST started a standardization process in 2016.

• Fourth round ongoing.

• Four candidates already selected.

• Kyber selected as KEM (Kyber 7→ ML-KEM).

ML-KEM is already actively being used
• ML-KEM used in Signal, iMessage, …
• Available in Chrome, Firefox, …

We have to assume that usage on embedded devices will soon become widespread.

1 / 10



The Fujisaki-Okamoto Transform in ML-KEM

Key Encapsulation Mechanism derived from Public Key Encryption

Alice Bob

Key Generation

Encapsulation

Decapsulation

Public Key

Ciphertext
Secret Key

Shared Secret Shared Secret

KyberKEM

Decrypt ciphertext
Encrypt m (same seed)
Compare ciphertexts

Sample m
Derive seed

Encrypt m (with seed)

2 / 10



The Fujisaki-Okamoto Transform in ML-KEM

Key Encapsulation Mechanism derived from Public Key Encryption

Alice Bob

Key Generation

Encapsulation

Decapsulation

Public Key

Ciphertext
Secret Key

Shared Secret Shared Secret

KyberKEM

Decrypt ciphertext
Encrypt m (same seed)
Compare ciphertexts

Sample m
Derive seed

Encrypt m (with seed)

2 / 10



Masked Comparisons – A Highly Sensitive Operation

In ML-KEM:
• We compare a re-computed (ct′) and a
submitted ciphertext (ct).

• If outcome is leaked, chosen-ciphertext attacks
are possible (see, e.g., [BDH+21; DHP+22; RRD+23]).

Attacker can force two cases (see, e.g., [BDH+21]):
1. ct and ct′ differ in one coefficient.
2. ct and ct′ differ in about half the bits.

Alice Bob

Key Generation

Encapsulation

Decapsulation

Public Key

Ciphertext
Secret Key

Shared Secret Shared Secret

KyberKEM

Decrypt ciphertext
Encrypt m (same seed)
Compare ciphertexts

Sample m
Derive seed

Encrypt m (with seed)

On embedded devices, we have to protect against power side channels.

3 / 10



Masked Comparisons – Most Recent Proposal

Most recent protected method [DBV23]
works by
• ∆ct = ct− ct′ in Boolean
masking.

• Multiply shares of coefficients with
random value over finite field.

• Check if shares sums zero.

Attacker targets Boolean shared ∆ct:

1 0 1 0 1 1 0 1 1 0 …

0 1 1 0 0 1 0 0 0 1 …

1 1 0 1 0 0 1 1 1 0 …

0 1 0 1 1 1 0 0 0 1 …

0 1 0 0 0 1 1 0 0 0 …

Unshared bits of first coefficient of∆ct

⊕

⊕

⊕

Formally verified in the t-probing model.

4 / 10



Building a Leakage Model

Implementation needs to multiply ∆ct-bits with random value

We suspected: this should amplify leakage of secret bits

5 / 10



Building a Leakage Model

Implementation needs to multiply ∆ct-bits with random value

We suspected: this should amplify leakage of secret bits

Our model (simulation for σ = 5):

−16 0 16 32 48 64
0

0.05

0.1

De
ns
ity

0 bits
1 bits

Power consumption of processing a single shared bit.

5 / 10



Building a Leakage Model

Implementation needs to multiply ∆ct-bits with random value

We suspected: this should amplify leakage of secret bits

Our model (simulation for σ = 5):

−16 0 16 32 48 64
0

0.05

0.1

De
ns
ity

0 bits
1 bits

Power consumption of processing a single shared bit.

Actual leakage confirms our model:

−60 −40 −20 0 20

0

0.2

0.4

0.6

De
ns
ity

0-bit
1-bit

−60 −40 −20 0 20

0

0.05

0.1

De
ns
ity

0-bit
1-bit

−60 −40 −20 0 20

0

0.1

0.2

0.3

De
ns
ity

0-bit
1-bit

−60 −40 −20 0 20

0

0.05

0.1

De
ns
ity

0-bit
1-bit

5 / 10



Designing Attacks

How to classify traces based on our leakage model?

General attack:
1. Submit n chosen-ciphertexts
potentially causing decryption failures
and record power traces.

2. Classify into decryption failures and
decryption successes.

3. Derive inequalities, recover secret key
with [HMS+23].

Classifying traces based on model:
• Goal: Learn distributions for 0 and 1

bits for each bit of ∆ct.
• Then: Classify bits based on
measurement and distribution.

• Based on “reliably” classified bits:
Decide if failure (at least one 1-bit) or
success (only 0-bits).

To classify trace: Classifying one 1-bit reliably suffices.

To recover secret key: 55% trace classification success rate suffices.

6 / 10



Designing Attacks

How to classify traces based on our leakage model?

General attack:
1. Submit n chosen-ciphertexts
potentially causing decryption failures
and record power traces.

2. Classify into decryption failures and
decryption successes.

3. Derive inequalities, recover secret key
with [HMS+23].

Classifying traces based on model:
• Goal: Learn distributions for 0 and 1

bits for each bit of ∆ct.
• Then: Classify bits based on
measurement and distribution.

• Based on “reliably” classified bits:
Decide if failure (at least one 1-bit) or
success (only 0-bits).

To classify trace: Classifying one 1-bit reliably suffices.

To recover secret key: 55% trace classification success rate suffices.

6 / 10



Designing Attacks

How to classify traces based on our leakage model?

General attack:
1. Submit n chosen-ciphertexts
potentially causing decryption failures
and record power traces.

2. Classify into decryption failures and
decryption successes.

3. Derive inequalities, recover secret key
with [HMS+23].

Classifying traces based on model:
• Goal: Learn distributions for 0 and 1

bits for each bit of ∆ct.
• Then: Classify bits based on
measurement and distribution.

• Based on “reliably” classified bits:
Decide if failure (at least one 1-bit) or
success (only 0-bits).

To classify trace: Classifying one 1-bit reliably suffices.

To recover secret key: 55% trace classification success rate suffices.

6 / 10



Designing Attacks

How to classify traces based on our leakage model?

Instead of a profiled attack:

Shared bits correspond to locations in
power trace.

• Each ciphertext gives trace.
• Vertical: Over multiple traces, same
relative location.

• Horizontal: Same trace, different
locations.

Vertical Analysis: Learn joint distribution
individually for each shared bit from all
traces.

Horizontal Analysis: Learn (the same) joint
distribution for all shared bits from one
trace.

Then: Separate distributions into two normal distributions.

7 / 10



Results

We simulated the attacks for different noise levels.

Simulated results with 4 shares:

0 2 4 6 8 10 12 14 16 18 20
0

0.25

0.5

0.75

1

Noise [σ]Co
rr
ec
tn
es
s/
Cl
as
si
fic
at
io
n
Ra
te

CR Template
CR Vertical
CR Horizontal
SR Template
SR Vertical
SR Horizontal

t-probing security proven, but:
Noise/masking order necessary to
prevent attacks extraordinarily high.

Why do these attacks work so well?
• Information (1 bit!) is
stored/processed in several
hundred bits.

• Slight advantage over guessing
suffices for attack.

• No instructions for used arithmetic
amplifies leakage.

→ High noise requirements.

8 / 10



Results

We simulated the attacks for different noise levels.

Simulated results with 4 shares:

0 2 4 6 8 10 12 14 16 18 20
0

0.25

0.5

0.75

1

Noise [σ]Co
rr
ec
tn
es
s/
Cl
as
si
fic
at
io
n
Ra
te

CR Template
CR Vertical
CR Horizontal
SR Template
SR Vertical
SR Horizontal

t-probing security proven, but:
Noise/masking order necessary to
prevent attacks extraordinarily high.

Why do these attacks work so well?
• Information (1 bit!) is
stored/processed in several
hundred bits.

• Slight advantage over guessing
suffices for attack.

• No instructions for used arithmetic
amplifies leakage.

→ High noise requirements.

8 / 10



Summary and Conclusion

Summary

To assess the security of a recent
masked comparison proposal, we:
• Built a leakage model based on the
noisy HW model.

• Derived several attacks working
under high noise/masking orders.

• Replaced profiling by
vertical/horizontal analysis.

• Verified model and attacks on
several devices.

Conclusion

In particular for post-quantum schemes:

• Even if t-probing secure,
noise/masking orders necessary to
prevent the attack in practice may
be unrealistically high.

• Commonly used methodology
ignores factors that are highly
relevant for post-quantum
schemes.

9 / 10



Summary and Conclusion

Summary

To assess the security of a recent
masked comparison proposal, we:
• Built a leakage model based on the
noisy HW model.

• Derived several attacks working
under high noise/masking orders.

• Replaced profiling by
vertical/horizontal analysis.

• Verified model and attacks on
several devices.

Conclusion

In particular for post-quantum schemes:

• Even if t-probing secure,
noise/masking orders necessary to
prevent the attack in practice may
be unrealistically high.

• Commonly used methodology
ignores factors that are highly
relevant for post-quantum
schemes.

Thank you for your attention!

9 / 10



References (1)

[BDH+21] Shivam Bhasin, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöppelmann, and Michiel Van Beirendonck. “Attacking and
Defending Masked Polynomial Comparison for Lattice-Based Cryptography”. In: IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2021.3 (2021), pp. 334–359. url: https://doi.org/10.46586/tches.v2021.i3.334-359.

[DBV23] Jan-Pieter D’Anvers, Michiel Van Beirendonck, and Ingrid Verbauwhede. “Revisiting Higher-Order Masked
Comparison for Lattice-Based Cryptography: Algorithms and Bit-Sliced Implementations”. In: IEEE Trans. Computers
72.2 (2023), pp. 321–332. url: https://doi.org/10.1109/TC.2022.3197074.

[DHP+22] Jan-Pieter D’Anvers, Daniel Heinz, Peter Pessl, Michiel Van Beirendonck, and Ingrid Verbauwhede. “Higher-Order
Masked Ciphertext Comparison for Lattice-Based Cryptography”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022.2
(2022), pp. 115–139. url: https://doi.org/10.46586/tches.v2022.i2.115-139.

[HMS+23] Julius Hermelink, Erik Mårtensson, Simona Samardjiska, Peter Pessl, and Gabi Dreo Rodosek. “Belief Propagation
Meets Lattice Reduction: Security Estimates for Error-Tolerant Key Recovery from Decryption Errors”. In: IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2023.4 (2023), pp. 287–317. url:
https://doi.org/10.46586/tches.v2023.i4.287-317.

[RRD+23] Gokulnath Rajendran, Prasanna Ravi, Jan-Pieter D’Anvers, Shivam Bhasin, and Anupam Chattopadhyay. “Pushing the
Limits of Generic Side-Channel Attacks on LWE-based KEMs - Parallel PC Oracle Attacks on Kyber KEM and Beyond”.
In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023.2 (2023), pp. 418–446. url:
https://doi.org/10.46586/tches.v2023.i2.418-446.

10 / 10

https://doi.org/10.46586/tches.v2021.i3.334-359
https://doi.org/10.1109/TC.2022.3197074
https://doi.org/10.46586/tches.v2022.i2.115-139
https://doi.org/10.46586/tches.v2023.i4.287-317
https://doi.org/10.46586/tches.v2023.i2.418-446

