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Post-Quantum Cryptography

We are in the process of migrating to Post-Quantum Cryptography.

NIST started a standardization process in 2016.

- Fourth round ongoing.
- Four candidates already selected.
- Kyber selected as KEM (Kyber — ML-KEM).
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We are in the process of migrating to Post-Quantum Cryptography.

NIST started a standardization process in 2016. ML-KEM is already actively being used
- Fourth round ongoing. - ML-KEM used in Signal, iMessage, ...
- Four candidates already selected. - Available in Chrome, Firefox, ...

- Kyber selected as KEM (Kyber s ML-KEM).

We have to assume that usage on embedded devices will soon become widespread.
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The Fujisaki-Okamoto Transform in M

Key Encapsulation Mechanism derived from Public Key Encryption

Alice Bob

Kyberkem

Key Generation

Encapsulation
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Ciphertext
A\

Decapsulation

Sample m
Derive seed
Encrypt m (with seed

Decrypt ciphertext
Encrypt m (same seed)
Compare ciphertexts
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Masked Comparisons - A Highly Sensitive Operation

In ML-KEM:

- We compare a re-computed (ct’) and a
submitted ciphertext (ct).

Alice Bob

Key Generation

- If outcome is leaked, chosen-ciphertext attacks \
are possible (see, e.g, [BDH+21; DHP+22; RRD+23]). | mee

Decapsulation

Encapsulation

Attacker can force two cases (see, e.g., [BDH+21]):

Decrypt ciphertext Sample m
Encrypt s {same-seed) Derive seed

Compare ciphertexts Encrypt m (with seed)

1. ct and ct’ differ in one coefficient.
2. ct and ct’ differ in about half the bits.

On embedded devices, we have to protect against power side channels.
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Masked Comparisons - Most Recent Proposal

Most recent protected method [DBV23] Attacker targets Boolean shared Act:
works by

Lifofrfofafa]ofr]rfof~

- Act =ct —ct’in Boolean
masking. G9|0|1|1|O|O|1|O|O|O|1|"'
- Multiply shares of coefficients with ol1[1]of[1]ofo]1]1[1]0]~
random value over finite field.

olofrfofrfif1]oJofof1]-

+ Check if shares sums zero.

[of1fofofof1]1]ofofo]~

Unshared bits of first coefficient of Act
Formally verified in the t-probing model.
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Building a Leakage Model

Implementation needs to multiply Act-bits with random value

We suspected: this should amplify leakage of secret bits
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Building a Leakage Model

Implementation needs to multiply Act-bits with random value

We suspected: this should amplify leakage of secret bits

Our model (simulation for ¢ = 5): Actual leakage confirms our model:
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Designing Attacks

How to classify traces based on our leakage model?

General attack:

1. Submit n chosen-ciphertexts
potentially causing decryption failures
and record power traces.

2. Classify into decryption failures and
decryption successes.

3. Derive inequalities, recover secret key
with [HMS+23].
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How to classify traces based on our leakage model?

General attack: Classifying traces based on model:

1. Submit n chosen-ciphertexts - Goal: Learn distributions for 0 and 1
potentially causing decryption failures bits for each bit of Act.
and record power traces. - Then: Classify bits based on

2. Classify into decryption failures and measurement and distribution.
decryption successes. - Based on “reliably” classified bits:

3. Derive inequalities, recover secret key Decide if failure (at least one 1-bit) or
with [HMS+23]. success (only 0-bits).

To classify trace: Classifying one 1-bit reliably suffices.

To recover secret key: 55% trace classification success rate suffices.
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Designing Attacks

How to classify traces based on our leakage model?

Instead of a profiled attack:

Shared bits correspond to locations in Vertical Analysis: Learn joint distribution
power trace. individually for each shared bit from all
- Each ciphertext gives trace. traces.
- Vertical: Over multiple traces, same Horizontal Analysis: Learn (the same) joint
relative location. distribution for all shared bits from one

- Horizontal: Same trace, different UTEIE:

locations.

Then: Separate distributions into two normal distributions.
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We simulated the attacks for different noise levels.

Simulated results with 4 shares:

1 —
—s— CRTemplate
0.75 1| —e— CR Vertical

——CR Horizontal
—— SR Template
0.25 || —— SR Vertical

—— SR Horizontal

0 T T T I I I I I I I
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0.5

Correctness/Classification Rate

t-probing security proven, but:
Noise/masking order necessary to
prevent attacks extraordinarily high.
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We simulated the attacks for different noise levels.

Simulated results with 4 shares: Why do these attacks work so well?

- Information (1 bit!) is
stored/processed in several
hundred bits.

1 T
—=— CR Template
0.75 -] —— CR Vertical
——CR Horizontal
—— SR Template
95 | | —=— SR Vertical B i i

025 —— SR Horizontal ’ Sllght advantage over gUESS|ng
. ‘ ! i ! i ! 1 I | 1

0 2 4 6 8 10 12 14 16 18 20 SUfﬁC@S fOI’ attack.

0.5

Correctness/Classification Rate

- No instructions for used arithmetic

t-probing security proven, but: amplifies leakage.
Noise/masking order necessary to

Seoodly — High noise requirements.
prevent attacks extraordinarily high.
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Summary and Conclusion

Summary Conclusion
To assess the security of a recent In particular for post-quantum schemes:
masked comparison proposal, we:
- Built a leakage model based on the * Even if t-probing secure,
noisy HW model. noise/masking orders necessary to

prevent the attack in practice may

- Derived several attacks working e .
be unrealistically high.

under high noise/masking orders.
- Commonly used methodology

ignores factors that are highly
relevant for post-quantum
schemes.

- Replaced profiling by
vertical/horizontal analysis.

- Verified model and attacks on
several devices.
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under high noise/masking orders.
- Commonly used methodology

ignores factors that are highly
relevant for post-quantum
schemes.

- Replaced profiling by
vertical/horizontal analysis.

- Verified model and attacks on
several devices.

Thank you for your attention!
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