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Post-Quantum Cryptography

We are in the process of migrating to Post-Quantum Cryptography.

NIST started a standardization process in 2016.

• Fourth round ongoing.

• Four candidates already selected.

• Kyber selected as KEM (Kyber 7→ ML-KEM).

ML-KEM is already actively being used
• ML-KEM used in Signal, iMessage, …
• Available in Chrome, Firefox, …

We have to assume that usage on embedded devices will soon become widespread.
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The Fujisaki-Okamoto Transform in ML-KEM

Key Encapsulation Mechanism derived from Public Key Encryption
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Masked Comparisons – A Highly Sensitive Operation

In ML-KEM:
• We compare a re-computed (ct′) and a
submitted ciphertext (ct).

• If outcome is leaked, chosen-ciphertext attacks
are possible (see, e.g., [BDH+21; DHP+22; RRD+23]).

Attacker can force two cases (see, e.g., [BDH+21]):
1. ct and ct′ differ in one coefficient.
2. ct and ct′ differ in about half the bits.
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On embedded devices, we have to protect against power side channels.

3 / 10



Masked Comparisons – Most Recent Proposal

Most recent protected method [DBV23]
works by
• ∆ct = ct− ct′ in Boolean
masking.

• Multiply shares of coefficients with
random value over finite field.

• Check if shares sums zero.

Attacker targets Boolean shared ∆ct:

1 0 1 0 1 1 0 1 1 0 …

0 1 1 0 0 1 0 0 0 1 …

1 1 0 1 0 0 1 1 1 0 …

0 1 0 1 1 1 0 0 0 1 …

0 1 0 0 0 1 1 0 0 0 …

Unshared bits of first coefficient of∆ct

⊕

⊕

⊕

Formally verified in the t-probing model.
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Building a Leakage Model

Implementation needs to multiply ∆ct-bits with random value

We suspected: this should amplify leakage of secret bits
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Designing Attacks

How to classify traces based on our leakage model?

General attack:
1. Submit n chosen-ciphertexts
potentially causing decryption failures
and record power traces.

2. Classify into decryption failures and
decryption successes.

3. Derive inequalities, recover secret key
with [HMS+23].

Classifying traces based on model:
• Goal: Learn distributions for 0 and 1

bits for each bit of ∆ct.
• Then: Classify bits based on
measurement and distribution.

• Based on “reliably” classified bits:
Decide if failure (at least one 1-bit) or
success (only 0-bits).

To classify trace: Classifying one 1-bit reliably suffices.

To recover secret key: 55% trace classification success rate suffices.
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Designing Attacks

How to classify traces based on our leakage model?

Instead of a profiled attack:

Shared bits correspond to locations in
power trace.

• Each ciphertext gives trace.
• Vertical: Over multiple traces, same
relative location.

• Horizontal: Same trace, different
locations.

Vertical Analysis: Learn joint distribution
individually for each shared bit from all
traces.

Horizontal Analysis: Learn (the same) joint
distribution for all shared bits from one
trace.

Then: Separate distributions into two normal distributions.
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Results

We simulated the attacks for different noise levels.

Simulated results with 4 shares:
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t-probing security proven, but:
Noise/masking order necessary to
prevent attacks extraordinarily high.

Why do these attacks work so well?
• Information (1 bit!) is
stored/processed in several
hundred bits.

• Slight advantage over guessing
suffices for attack.

• No instructions for used arithmetic
amplifies leakage.

→ High noise requirements.
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Summary and Conclusion

Summary

To assess the security of a recent
masked comparison proposal, we:
• Built a leakage model based on the
noisy HW model.

• Derived several attacks working
under high noise/masking orders.

• Replaced profiling by
vertical/horizontal analysis.

• Verified model and attacks on
several devices.

Conclusion

In particular for post-quantum schemes:

• Even if t-probing secure,
noise/masking orders necessary to
prevent the attack in practice may
be unrealistically high.

• Commonly used methodology
ignores factors that are highly
relevant for post-quantum
schemes.

9 / 10



Summary and Conclusion

Summary

To assess the security of a recent
masked comparison proposal, we:
• Built a leakage model based on the
noisy HW model.

• Derived several attacks working
under high noise/masking orders.

• Replaced profiling by
vertical/horizontal analysis.

• Verified model and attacks on
several devices.

Conclusion

In particular for post-quantum schemes:

• Even if t-probing secure,
noise/masking orders necessary to
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relevant for post-quantum
schemes.

Thank you for your attention!
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