
Fault-enabled chosen-ciphertext attacks on Kyber

Julius Hermelink1,2 Peter Pessl2 Thomas Pöppelmann2

1Universität der Bundeswehr München

2Infineon Technologies AG

1 / 20



Preliminaries - Kyber

In this work, we present an attack on Kyber using the combination of a
chosen-ciphertext attack and a single-bit fault attack.

▶ Kyber is a CCA2-secure post-quantum KEM.

▶ Finalist in the NIST standardization process.

▶ Relies on the hardness of the MLWE problem (lattice-based).

▶ Three parameter sets: Kyber512, Kyber768, Kyber1024.

▶ Built from an underlying PKE using a variant of the FO-transform.

▶ Works in R = Fq[x ]/(x
n − 1) and Rk .

2 / 20



Kyber - Decapsulation

c

decrypt m re-encrypt

compare

During decryption, the message is recovered from the polynomial12

rec = m + eT r − sTe1 + e2

= m + noise.

where e, s are secret, other terms are known to the attacker, and the noise is small.
1Ignoring compression errors
2Vectors of polynomials in bold

3 / 20



Kyber - Message recovery

▶ Encryption: 0-bits mapped to 0, 1-bits mapped to q
2 (one bit to one coefficient).

▶ Decryption: Recover from rec = m + noise by mapping to 0 if closer to 0 than to
q
2 , otherwise to 1.

▶ Upper half of the circle mapped to 0, lower half to 1.

0

q
2

q
4

3q
4

4 / 20



Decryption errors

▶ Message is recovered from rec = m + noise.
▶ Adding q

4 to a coefficient of rec : Corresponding message bit might change
depending on which side the noisy message is on.

▶ Decryption error happens if noise coefficient is positive.

0

q
2

q
4

3q
4

5 / 20



Decryption errors

▶ Adding q
4 and observing decryption errors tells us if a coefficient of

noise = eT r − sTe1 + e2.

is positive or negative3.
▶ Gives inequalities involving secrets e, s.

0

q
2

q
4

3q
4

3Ignoring compression errors
6 / 20



Pessl and Prokop’s attack

A recent fault attack by Pessl and Prokop takes advantage of decryption errors.

▶ Pessl and Prokop fault the decoder to cause the addition of q
4 .

▶ From each fault/decapsulation: Recover one inequality.

▶ Solve inequalities by updating distributions of coefficients using obtained
inequalities.

Several limitations:

▶ Prevented by shuffling.

▶ Very specific fault model.

▶ Depends on the implementation.

7 / 20



Our attack

▶ Send manipulated ciphertext c ′ with q
4 added to one coefficient of a valid

ciphertext c .

▶ Device under attack obtains c ′′ from re-encryption.

▶ After decryption, fault one bit of stored ciphertext c ′ to match c .

▶ Thereby, the FO-transform effectivly compares c against c ′′.

▶ Observe decryption errors and obtain inequalities.

c ′

decrypt m′ re-encrypt

compare

8 / 20



Our attack

By introducing the fault

▶ The device decrypts c ′, which is c with a q
4 -error added in one coefficient.

▶ Result of re-encryption c ′′ is compared against c (as c ′ was corrected).

Two cases:

1. c ′ causes decryption error ⇒ decrypt returns m′ ̸= m ⇒ c ′′ ̸= c .

2. c ′ causes no decryption error ⇒ decrypt returns m′ = m ⇒ c ′′ = c .

c ′

decrypt m′ re-encrypt

compare

9 / 20



Fault model

Fault location in time:

▶ After decrypt was called,

▶ and before the re-encryption comparison.

Value to be faulted:

▶ Either the stored ciphertext,

▶ or the ciphertext obtained from re-encryption.

Fault model: Set, reset, or flip a single bit.

10 / 20



Why one-bit faults

But why are one-bit faults sufficient?

▶ Ciphertexts are compressed before being outputed.

▶ Compression is lossy and changing one bit corresponds to adding a multiple of q
2d

(rounded up or down).

▶ Recovering messages from noisy versions is compression with d = 1.

compress(x , d) =
⌈
(2d/q) · x

⌋
decompress(x , d) =

⌈
(q/2d) · x

⌋

11 / 20



Kyber compression

Compression of a coefficient x can be thought of as

▶ having 2d points on a circle,
▶ choosing the closest one to x ,
▶ returning the index of that point.

0

q
2

q
4

3q
4

0 1 2 3

12 / 20



Kyber compression

Decompression maps a value i ∈
{
0 . . . 2d − 1

}
to the i-th point on the circle.

Changing one bit on the right (compressed), corresponds to an additition (or
substraction) of a multiple of q

2d
(rounded up or down) on the left (uncompressed).

0

q
2

q
4

3q
4

0 1 2 3

13 / 20



Solving inequalities

The first steps of our attack are to create, send, and then correct chosen ciphertexts.

▶ We then obtain a number of inequalities.

▶ Those inequalities give information about the private key, but how to solve them?

We tried

▶ using integer linear programming to solve for the private key,

▶ using lattice reduction with the framework provided by Dachman-Soled et al 4.

Our attempts seemed to be computationally very expensive and were not successful.

4https://eprint.iacr.org/2020/292
14 / 20



Solving inequalities

Simply solving a system of inequalities ignores additional information we have.

▶ The unknown variables are the coefficients of the secrets e and s.

▶ Those were sampled from a binomial distribution.

Pessl and Prokop developed a different approach:

▶ Initialize a vector of proabilitiy distributions representing each unknown coefficient.

▶ In each step update using the inequality matrix.

This solves the system of inequalities with a reasonable number of inequalities and
time. Unfortunately, the memory consumption is rather high.

15 / 20



Solving inequalities using belief propagation

Using belief propagation needs 20-30% less faults and requires significantly less RAM.

▶ For each unknown coefficient of x (given by e and s), we initialise a variable node
with a prior given by the binomial distribition they were sampled from.

▶ For each inequality, we initialise a check node.

x0 x1 x2

Check 0 Check 1 Check 2 Check 3

16 / 20



Performance - Success rate

2000 3000 4000 5000 6000 7000 8000 9000

Number of inequalities

0.00

0.25

0.50

0.75

1.00
S
u
cc

es
s 

ra
te

Kyber512

Kyber768

Kyber1024

17 / 20



Perfomance - Runtime

Runtimes in minutes on an Intel(R) Xeon(R) Gold 6242 with 32 and 8 threads.

Parameter set Iterations 32 threads 8 threads

Kyber512 (6000 inequalities) 6.8 3.25 9.3
Kyber768 (7000 inequalities) 6.75 6.7 18.6
Kyber1024 (9000 inequalities) 9 16.9 39.25

18 / 20



Conclusion

Our approach: Instead of sending a valid ciphertext and then applying a fault, send
manipulated ciphertext and use a fault to correct.

Several advantages:

▶ Manipulation is performed offline, therefore observing successful decapsulation
means that the fault worked (even with unreliable faults).

▶ Not prevented by shuffling the decoder and several other countermeasures.

▶ Fault may be introduced at several places in time/memory over a very long
time-span.

▶ Less implementation specific.

We also present a more efficient recovery method using belief propagation.

19 / 20



Thank you for listening!

20 / 20


