Julius Hermelink!2 Peter Pess|?

Thomas Péppelmann?

LUniversitit der Bundeswehr Miinchen

2Infineon Technologies AG

40> «F» « =)

<

i
-

Do
1/20

Preliminaries - Kyber

In this work, we present an attack on Kyber using the combination of a
chosen-ciphertext attack and a single-bit fault attack.

» Kyber is a CCA2-secure post-quantum KEM.

» Finalist in the NIST standardization process.

» Relies on the hardness of the MLWE problem (lattice-based).

» Three parameter sets: Kyber512, Kyber768, Kyber1024.

» Built from an underlying PKE using a variant of the FO-transform.
» Works in R = Fy[x]/(x" — 1) and RX.

2/20

Kyber - Decapsulation

c compare

decrypt @ re-encrypt

During decryption, the message is recovered from the polynomiall?

rec m+eTr — sTel + e

= m + noise.

where e, s are secret, other terms are known to the attacker, and the noise is small.

!Ignoring compression errors
2\/ectors of polynomials in bold

3/20

» Encryption: 0-bits mapped to 0, 1-bits mapped to 7 (one bit to one coefficient).
3, otherwise to 1.

» Decryption: Recover from rec = m + noise by mapping to 0 if closer to 0 than to
» Upper half of the circle mapped to 0, lower half to 1.

0
/->

»

o

Nl

» Message is recovered from rec = m 4+ noise.

> Adding 7 to a coefficient of rec: Corresponding message bit might change
depending on which side the noisy message is on.

» Decryption error happens if noise coefficient is positive.

0
N

»g

~lo

NlQ

«0» «F>r «=» «

i
-
[y

Do
5/20

noise = e’
is positive or negative3.

» Adding 7 and observing decryption errors tells us if a coefficient of

r— sTel + 6.
» Gives inequalities involving secrets e, s.

0

=N

~lo

3lgnoring compression errors

Nl

«4O0> 4 Fr «=)» « =)

Do
6/20

Pessl and Prokop's attack

A recent fault attack by Pessl and Prokop takes advantage of decryption errors.

» Pessl and Prokop fault the decoder to cause the addition of %.
» From each fault/decapsulation: Recover one inequality.

» Solve inequalities by updating distributions of coefficients using obtained
inequalities.

Several limitations:

» Prevented by shuffling.
» Very specific fault model.

» Depends on the implementation.

7/20

Our attack

» Send manipulated ciphertext ¢’ with 7 added to one coefficient of a valid
ciphertext c.

» Device under attack obtains ¢ from re-encryption.
» After decryption, fault one bit of stored ciphertext ¢’ to match c.
» Thereby, the FO-transform effectivly compares ¢ against ¢”.

» Observe decryption errors and obtain inequalities.

! compare

decrypt @ re-encrypt

8/20

Our attack

By introducing the fault
» The device decrypts ¢/, which is ¢ with a %—error added in one coefficient.

» Result of re-encryption ¢” is compared against ¢ (as ¢’ was corrected).

Two cases:
1. ¢’ causes decryption error = decrypt returns m’ # m = ¢” # c.

2. ¢ causes no decryption error = decrypt returns m' = m = ¢’ = c.

c compare

decrypt @ re-encrypt

9/20

Fault location in time:

» After decrypt was called,

» and before the re-encryption comparison.

Value to be faulted:

» Either the stored ciphertext,

» or the ciphertext obtained from re-encryption

Fault model: Set, reset, or flip a single bit.

«40>» «Fr» «=)» <

v
[y

Do
10/20

Why one-bit faults

But why are one-bit faults sufficient?

» Ciphertexts are compressed before being outputed.

q

» Compression is lossy and changing one bit corresponds to adding a multiple of 35

(rounded up or down).

» Recovering messages from noisy versions is compression with d = 1.

compress(x, d) = [(Qd/q) 'XJ

decompress(x, d) = {(q/Zd) -xJ

11/20

Compression of a coefficient x can be thought of as
» having 29 points on a circle,
» choosing the closest one to x,

» returning the index of that point

»g

sla

NlQ
N
w

«40>» «Fr» «=)» <

v
[y

Do
12/20

Decompression maps a value i € {O .29 — 1} to the i-th point on the circle.

Changing one bit on the right (compressed), corresponds to an additition (or

substraction) of a multiple of 55 (rounded up or down) on the left (uncompressed).

»g

o

Nl
w

«0» «F>r «=» «

v
[y

Do
13/20

Solving inequalities

The first steps of our attack are to create, send, and then correct chosen ciphertexts.

» We then obtain a number of inequalities.

» Those inequalities give information about the private key, but how to solve them?

We tried
» using integer linear programming to solve for the private key,

» using lattice reduction with the framework provided by Dachman-Soled et al 4.

Our attempts seemed to be computationally very expensive and were not successful.

*https://eprint.iacr.org/2020,/292
14/20

Solving inequalities

Simply solving a system of inequalities ignores additional information we have.
» The unknown variables are the coefficients of the secrets e and s.

» Those were sampled from a binomial distribution.

Pessl and Prokop developed a different approach:

» Initialize a vector of proabilitiy distributions representing each unknown coefficient.

» In each step update using the inequality matrix.

This solves the system of inequalities with a reasonable number of inequalities and
time. Unfortunately, the memory consumption is rather high.

15/20

Solving inequalities using belief propagation

Using belief propagation needs 20-30% less faults and requires significantly less RAM.

» For each unknown coefficient of x (given by e and s), we initialise a variable node
with a prior given by the binomial distribition they were sampled from.

» For each inequality, we initialise a check node.

16 /20

Success rate

1.00

0.75 1

0.50 1

0.25 1

0.00

—>— Kyber512
—8— Kyber768
~»— Kyber1024

2000 3000

4000 5000 6000 7000

Number of inequalities

Perfomance - Runtime

Runtimes in minutes on an Intel(R) Xeon(R) Gold 6242 with 32 and 8 threads.

Parameter set Iterations 32 threads 8 threads
Kyber512 (6000 inequalities) 6.8 3.25 9.3
Kyber768 (7000 inequalities) 6.75 6.7 18.6

Kyber1024 (9000 inequalities) 9 16.9 39.25

18/20

Conclusion

Our approach: Instead of sending a valid ciphertext and then applying a fault, send
manipulated ciphertext and use a fault to correct.

Several advantages:
» Manipulation is performed offline, therefore observing successful decapsulation
means that the fault worked (even with unreliable faults).
» Not prevented by shuffling the decoder and several other countermeasures.
» Fault may be introduced at several places in time/memory over a very long
time-span.

P> Less implementation specific.

We also present a more efficient recovery method using belief propagation.

19/20

Thank you for listening!

