

Fault-enabled chosen-ciphertext attacks on Kyber

Julius Hermelink^{1,2} Peter Pessl² Thomas Pöppelmann²

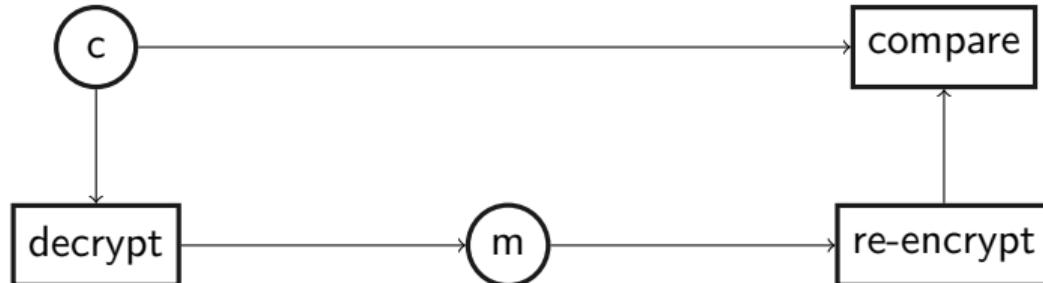
¹Universität der Bundeswehr München

²Infineon Technologies AG

In this work, we present an attack on Kyber using the combination of a chosen-ciphertext attack and a single-bit fault attack.

- ▶ Kyber is a CCA2-secure post-quantum KEM.
- ▶ Finalist in the NIST standardization process.
- ▶ Relies on the hardness of the MLWE problem (lattice-based).
- ▶ Three parameter sets: Kyber512, Kyber768, Kyber1024.
- ▶ Built from an underlying PKE using a variant of the FO-transform.
- ▶ Works in $R = \mathbb{F}_q[x]/(x^n - 1)$ and R^k .

Kyber - Decapsulation



During decryption, the message is recovered from the polynomial¹²

$$\begin{aligned} \text{rec} &= m + \mathbf{e}^T \mathbf{r} - \mathbf{s}^T \mathbf{e}_1 + e_2 \\ &= m + \text{noise}. \end{aligned}$$

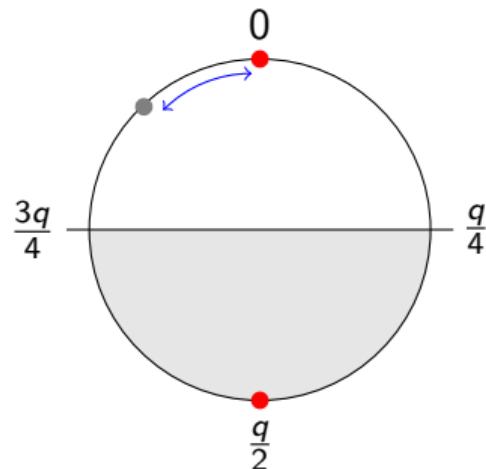
where \mathbf{e}, \mathbf{s} are secret, other terms are known to the attacker, and the noise is small.

¹Ignoring compression errors

²Vectors of polynomials in bold

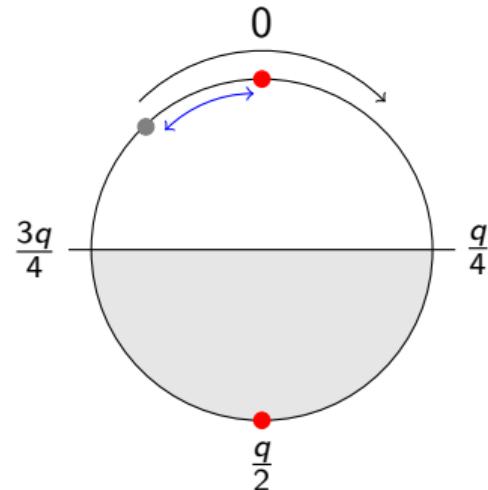
Kyber - Message recovery

- ▶ Encryption: 0-bits mapped to 0, 1-bits mapped to $\frac{q}{2}$ (one bit to one coefficient).
- ▶ Decryption: Recover from $rec = m + noise$ by mapping to 0 if closer to 0 than to $\frac{q}{2}$, otherwise to 1.
- ▶ Upper half of the circle mapped to 0, lower half to 1.



Decryption errors

- ▶ Message is recovered from $rec = m + noise$.
- ▶ Adding $\frac{q}{4}$ to a coefficient of rec : Corresponding message bit might change depending on which side the noisy message is on.
- ▶ Decryption error happens if $noise$ coefficient is positive.



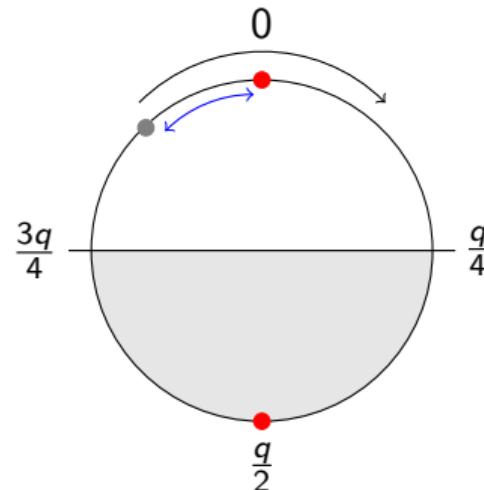
Decryption errors

- ▶ Adding $\frac{q}{4}$ and observing decryption errors tells us if a coefficient of

$$\text{noise} = \mathbf{e}^T \mathbf{r} - \mathbf{s}^T \mathbf{e}_1 + e_2.$$

is positive or negative³.

- ▶ Gives inequalities involving secrets \mathbf{e}, \mathbf{s} .



³Ignoring compression errors

Pessl and Prokop's attack

A recent fault attack by Pessl and Prokop takes advantage of decryption errors.

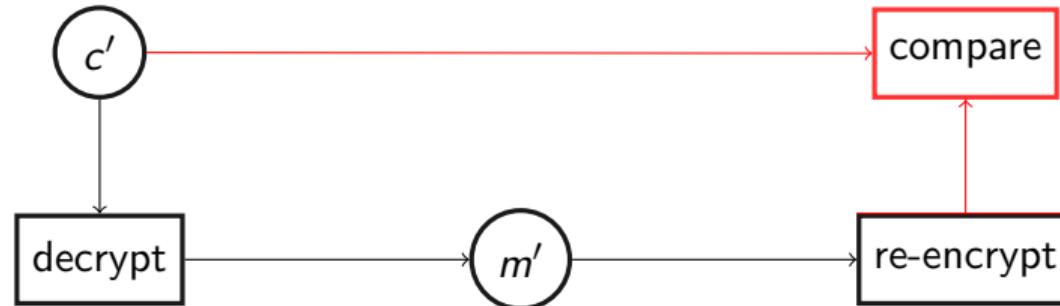
- ▶ Pessl and Prokop fault the decoder to cause the addition of $\frac{q}{4}$.
- ▶ From each fault/decapsulation: Recover one inequality.
- ▶ Solve inequalities by updating distributions of coefficients using obtained inequalities.

Several limitations:

- ▶ Prevented by shuffling.
- ▶ Very specific fault model.
- ▶ Depends on the implementation.

Our attack

- ▶ Send manipulated ciphertext c' with $\frac{q}{4}$ added to one coefficient of a valid ciphertext c .
- ▶ Device under attack obtains c'' from re-encryption.
- ▶ After decryption, fault one bit of stored ciphertext c' to match c .
- ▶ Thereby, the FO-transform effectively compares c against c'' .
- ▶ Observe decryption errors and obtain inequalities.



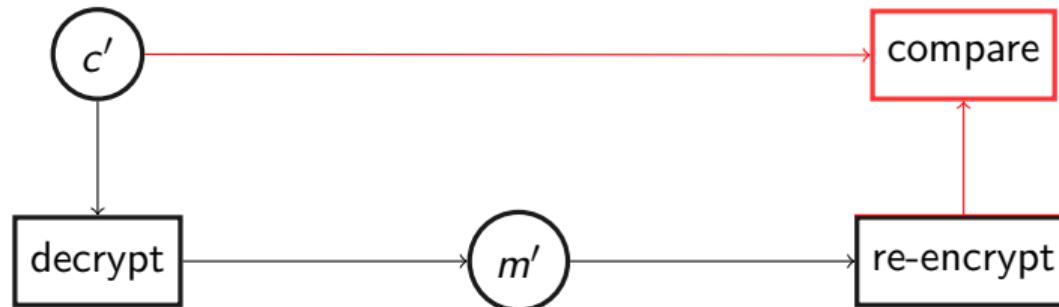
Our attack

By introducing the fault

- ▶ The device decrypts c' , which is c with a $\frac{q}{4}$ -error added in one coefficient.
- ▶ Result of re-encryption c'' is compared against c (as c' was corrected).

Two cases:

1. c' causes decryption error \Rightarrow decrypt returns $m' \neq m \Rightarrow c'' \neq c$.
2. c' causes no decryption error \Rightarrow decrypt returns $m' = m \Rightarrow c'' = c$.



Fault location in time:

- ▶ After decrypt was called,
- ▶ and before the re-encryption comparison.

Value to be faulted:

- ▶ Either the stored ciphertext,
- ▶ or the ciphertext obtained from re-encryption.

Fault model: Set, reset, or flip a single bit.

Why one-bit faults

But why are one-bit faults sufficient?

- ▶ Ciphertexts are compressed before being outputed.
- ▶ Compression is lossy and changing one bit corresponds to adding a multiple of $\frac{q}{2^d}$ (rounded up or down).
- ▶ Recovering messages from noisy versions is compression with $d = 1$.

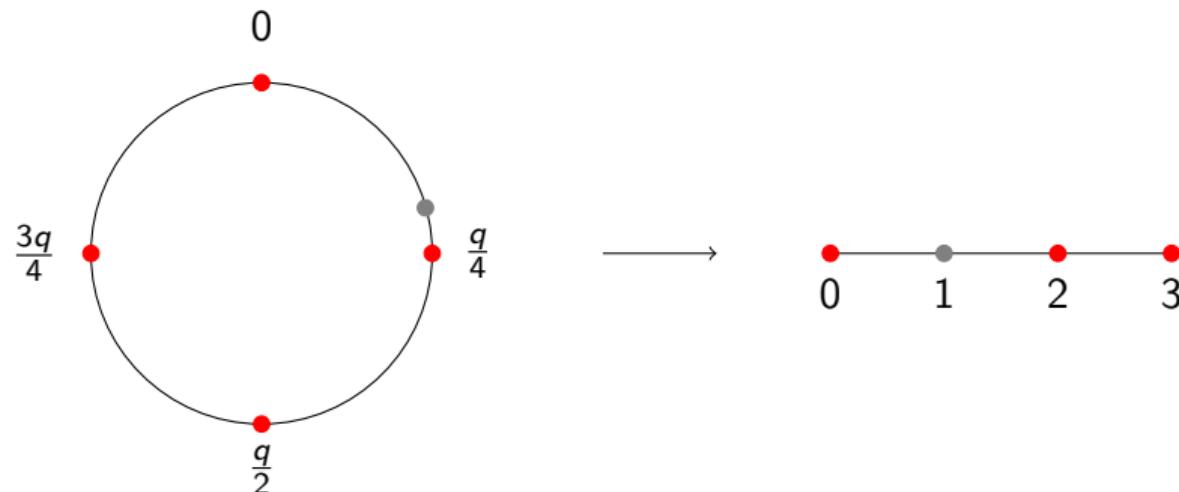
$$\text{compress}(x, d) = \left\lceil (2^d/q) \cdot x \right\rceil$$

$$\text{decompress}(x, d) = \left\lceil (q/2^d) \cdot x \right\rceil$$

Kyber compression

Compression of a coefficient x can be thought of as

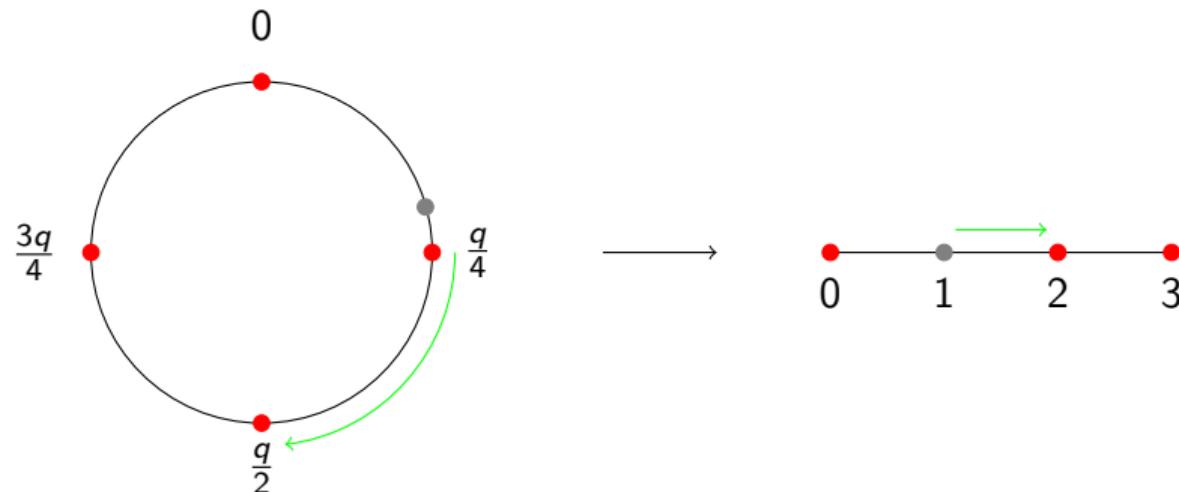
- ▶ having 2^d points on a circle,
- ▶ choosing the closest one to x ,
- ▶ returning the index of that point.



Kyber compression

Decompression maps a value $i \in \{0 \dots 2^d - 1\}$ to the i -th point on the circle.

Changing one bit on the right (compressed), corresponds to an addition (or subtraction) of a multiple of $\frac{q}{2^d}$ (rounded up or down) on the left (uncompressed).



Solving inequalities

The first steps of our attack are to create, send, and then correct chosen ciphertexts.

- ▶ We then obtain a number of inequalities.
- ▶ Those inequalities give information about the private key, but how to solve them?

We tried

- ▶ using integer linear programming to solve for the private key,
- ▶ using lattice reduction with the framework provided by Dachman-Soled et al ⁴.

Our attempts seemed to be computationally very expensive and were not successful.

⁴<https://eprint.iacr.org/2020/292>

Solving inequalities

Simply solving a system of inequalities ignores additional information we have.

- ▶ The unknown variables are the coefficients of the secrets e and s .
- ▶ Those were sampled from a binomial distribution.

Pessl and Prokop developed a different approach:

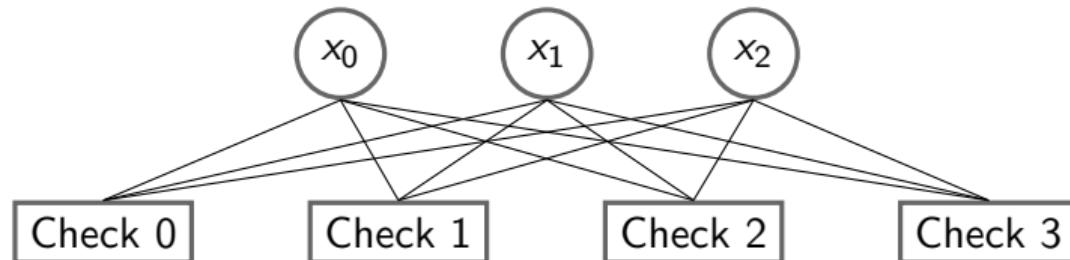
- ▶ Initialize a vector of probability distributions representing each unknown coefficient.
- ▶ In each step update using the inequality matrix.

This solves the system of inequalities with a reasonable number of inequalities and time. Unfortunately, the memory consumption is rather high.

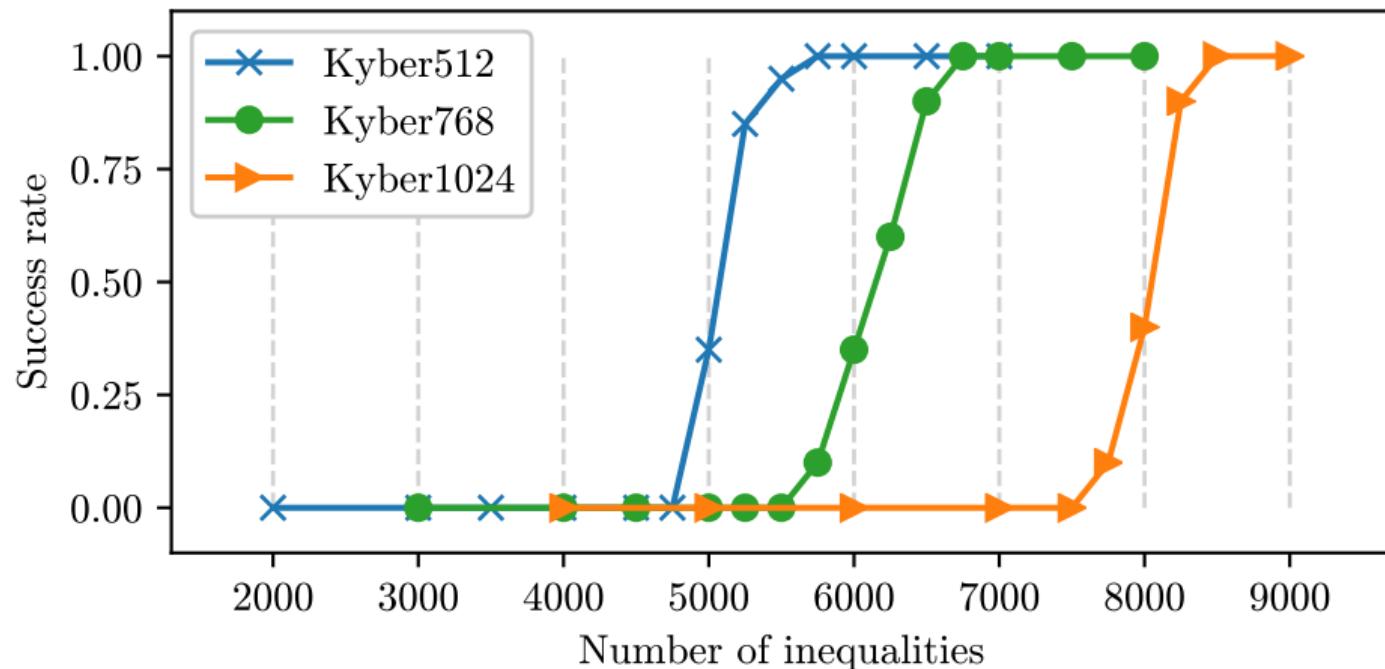
Solving inequalities using belief propagation

Using belief propagation needs 20-30% less faults and requires significantly less RAM.

- ▶ For each unknown coefficient of x (given by e and s), we initialise a *variable node* with a prior given by the binomial distribution they were sampled from.
- ▶ For each inequality, we initialise a *check node*.



Performance - Success rate



Perfomance - Runtime

Runtimes in minutes on an Intel(R) Xeon(R) Gold 6242 with 32 and 8 threads.

Parameter set	Iterations	32 threads	8 threads
Kyber512 (6000 inequalities)	6.8	3.25	9.3
Kyber768 (7000 inequalities)	6.75	6.7	18.6
Kyber1024 (9000 inequalities)	9	16.9	39.25

Conclusion

Our approach: Instead of sending a valid ciphertext and then applying a fault, send manipulated ciphertext and use a fault to correct.

Several advantages:

- ▶ Manipulation is performed offline, therefore observing successful decapsulation means that the fault worked (even with unreliable faults).
- ▶ Not prevented by shuffling the decoder and several other countermeasures.
- ▶ Fault may be introduced at several places in time/memory over a very long time-span.
- ▶ Less implementation specific.

We also present a more efficient recovery method using belief propagation.

Thank you for listening!