

Side-Channel Analysis of Post-Quantum Schemes

Julius Hermelink

April 1, 2025

Who am I?

Short CV:

- Postdoc at MPI-SP in Bochum.
- PhD from UniBw in Munich in 2024.
- Master's in Mathematics from LMU in 2020.

Research interests:

- Implementation attacks on post-quantum schemes.
- Soft-analytic side-channel attacks.
- Cryptanalysis (under side information).
- Information theory.
- Formal models for side-channel security.

The Quantum Threat

Quantum computers threaten currently used asymmetric cryptography.

We have to assume that:

- Large-scale quantum computer break commonly used asymmetric schemes.
- Adversaries: harvest now, decrypt later.

The Quantum Threat

Quantum computers threaten currently used asymmetric cryptography.

We have to assume that:

- Large-scale quantum computer break commonly used asymmetric schemes.
- Adversaries: harvest now, decrypt later.

Therefore, we need:

- Post-quantum asymmetric cryptography.
- Most pressingly key exchanges.

The NIST Standardization Process

NIST is in the process of standardizing post-quantum cryptography.

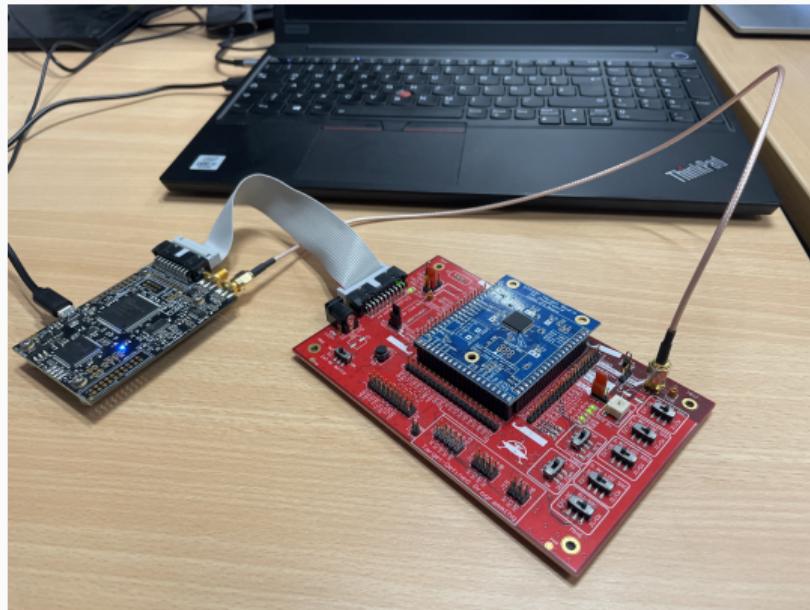
NIST started a standardization process in 2016.

- Five candidates already selected.
- Three are lattice-based.
- ML-KEM and ML-DSA standardized.

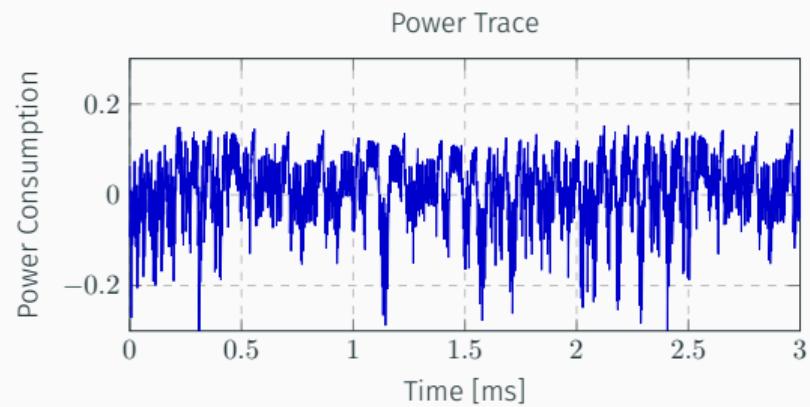
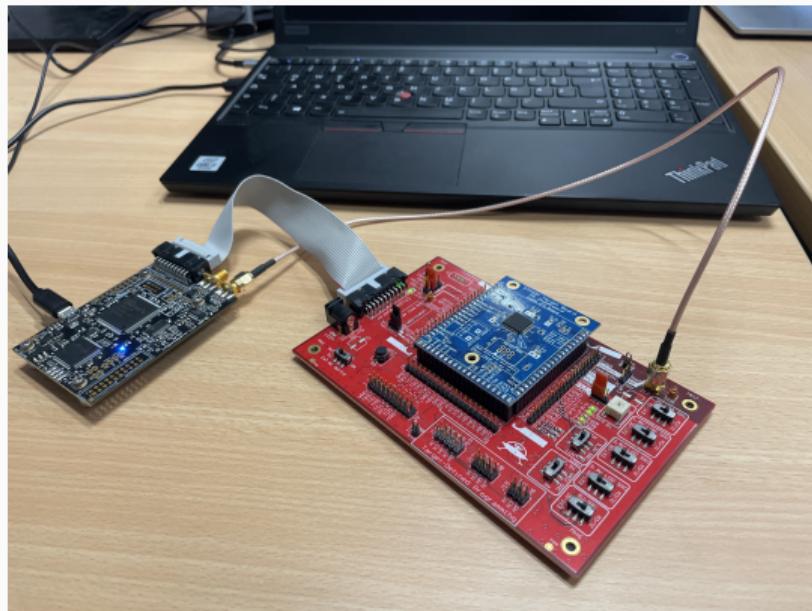
The NIST Standardization Process

NIST is in the process of standardizing post-quantum cryptography.

NIST started a standardization process in 2016.


- Five candidates already selected.
- Three are lattice-based.
- ML-KEM and ML-DSA standardized.

ML-KEM used in Signal, Chrome, iMessage, ...



Attacks on Embedded Devices

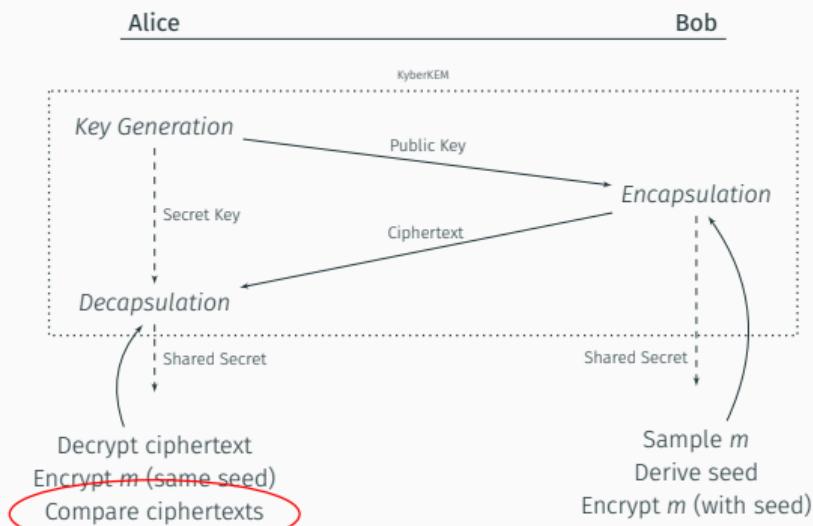
Embedded devices may be particularly vulnerable to side-channel and fault attacks.

Attacks on Embedded Devices

Embedded devices may be particularly vulnerable to side-channel and fault attacks.

The Insecurity of Masked Comparisons

Julius Hermelink, Kai-Chun Ning, Richard Petri, and Emanuele Strieder. “The Insecurity of Masked Comparisons: SCAs on ML-KEM’s FO-Transform”. In: ACM CCS 2024. Ed. by Bo Luo, Xiaojing Liao, Jun Xu, Engin Kirda, and David Lie. ACM Press, Oct. 2024, pp. 2430–2444


Fujisaki-Okamoto Transform Comparisons

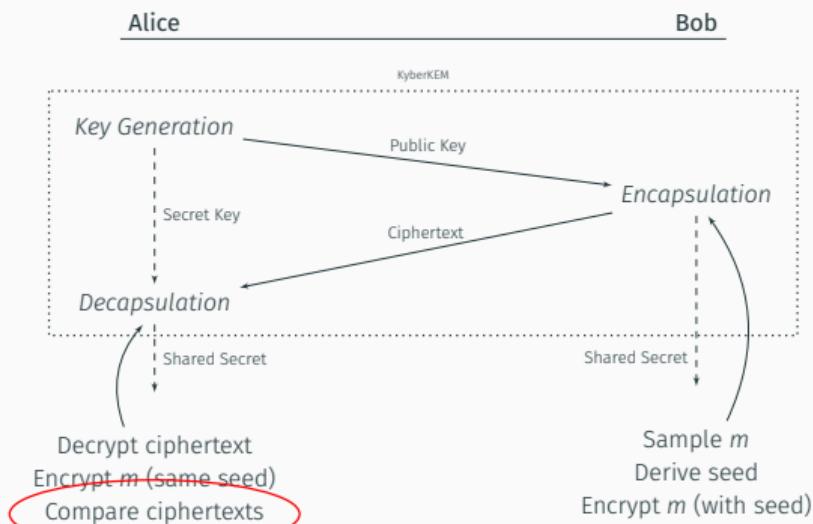
In ML-KEM:

- Comparison $ct' == ct$.
- Checks if honestly generated.
- Comparison is sensitive operation.

Adversary observes comparison:

- Enables chosen-ciphertext attack.
- Gives inequalities in the secret key.
- Solving using our prior work.

Fujisaki-Okamoto Transform Comparisons

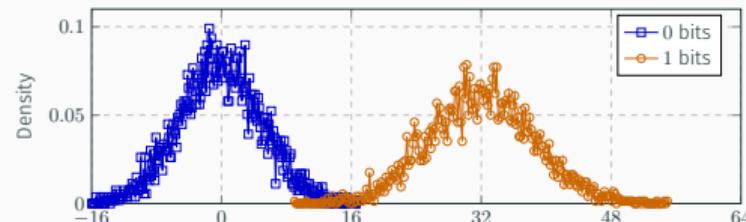

In ML-KEM:

- Comparison $ct' == ct$.
- Checks if honestly generated.
- Comparison is sensitive operation.

Adversary observes comparison:

- Enables chosen-ciphertext attack.
- Gives inequalities in the secret key.
- Solving using our prior work.

$$(-1)^{\text{obs}} (\mathbf{r}^\top \mathbf{e} - \mathbf{s}^\top (\mathbf{e}_1 + \Delta \mathbf{u}) + e_2 + \Delta v) \leq 0$$

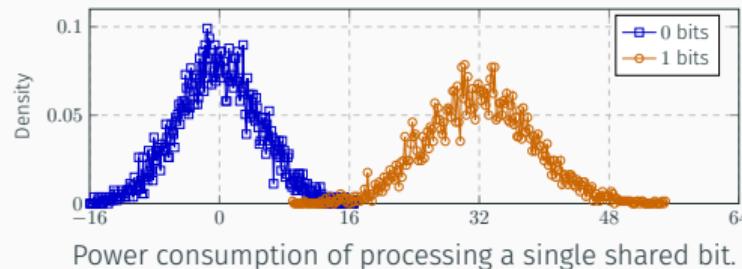


Leakage Model

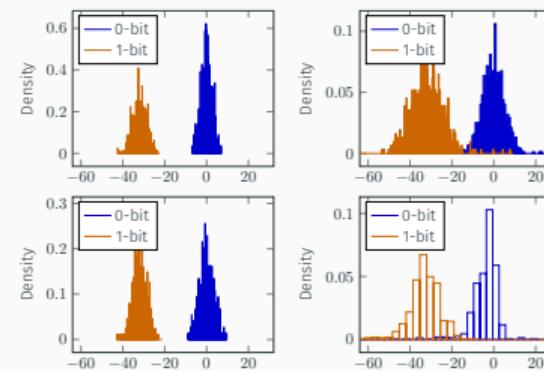
Recent masked t-probing secure proposal: We suspected signal amplification.

Masking countermeasures share information over multiple variables, e.g., $s = s_0 \oplus s_1$.

Our model (simulation for $\sigma = 5$):

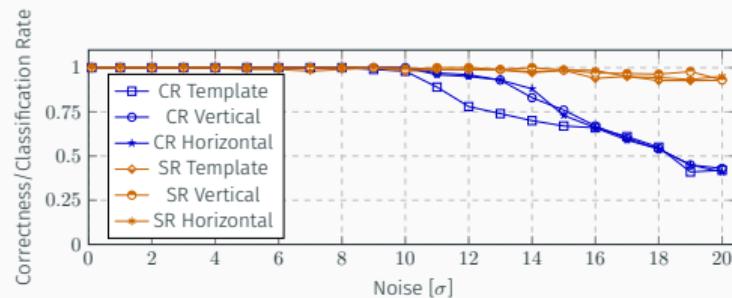

Power consumption of processing a single shared bit.

Leakage Model


Recent masked t-probing secure proposal: We suspected signal amplification.

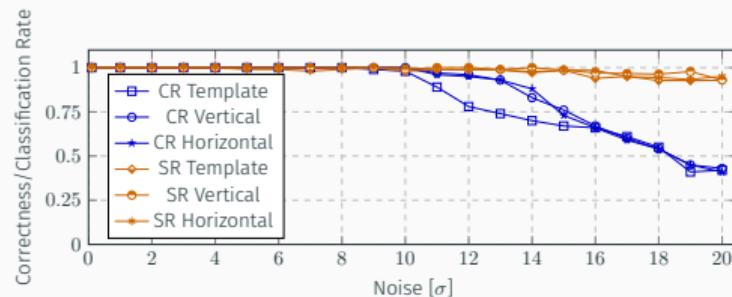
Masking countermeasures share information over multiple variables, e.g., $s = s_0 \oplus s_1$.

Our model (simulation for $\sigma = 5$):


Actual leakage confirms our model:

Results

Carried out in practice and simulated for different noise levels.


Simulated results with 4 shares:

Results

Carried out in practice and simulated for different noise levels.

Simulated results with 4 shares:

Why do these attacks work so well?

- Slight advantage enough.
- Amplified leakage.

→ High noise requirements.

Noise/masking order necessary to prevent attacks extraordinarily high.

A Generic Framework for Side-Channel Attacks against LWE

Julius Hermelink, Silvan Streit, Erik Mårtensson, and Richard Petri. "A Generic Framework for Side-Channel Attacks against LWE-based Cryptosystems". In: *To appear in Eurocrypt*. LNCS. Springer, 2025. URL: <https://eprint.iacr.org/2024/1211>

Julius Hermelink, Kai-Chun Ning, and Richard Petri. *Finding and Protecting the Weakest Link: On Side-Channel Attacks on Masked ML-DSA*. Cryptology ePrint Archive, Report 2025/276. 2025. URL: <https://eprint.iacr.org/2025/276>

Distribution Hints

The secret often has to be recovered from side information.

Adversary may learn, e.g.:

- $\langle \mathbf{v}, \mathbf{x} \rangle = l$
- $\langle \mathbf{v}, \mathbf{x} \rangle \equiv l \pmod{p}$
- $\langle \mathbf{v}, \mathbf{x} \rangle = l + \mathcal{N}(0, \sigma)$
- $\langle \mathbf{v}, \mathbf{x} \rangle \leq l$
- $\text{HW}(\langle \mathbf{v}, \mathbf{x} \rangle) = h + \mathcal{N}(0, \sigma)$
- ...

for known $\mathbf{v}, l, h, p, \sigma$; called hints.

Distribution Hints

The secret often has to be recovered from side information.

Adversary may learn, e.g.:

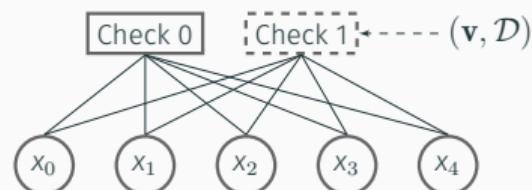
- $\langle \mathbf{v}, \mathbf{x} \rangle = l$
- $\langle \mathbf{v}, \mathbf{x} \rangle \equiv l \pmod{p}$
- $\langle \mathbf{v}, \mathbf{x} \rangle = l + \mathcal{N}(0, \sigma)$
- $\langle \mathbf{v}, \mathbf{x} \rangle \leq l$
- $\text{HW}(\langle \mathbf{v}, \mathbf{x} \rangle) = h + \mathcal{N}(0, \sigma)$
- ...

for known $\mathbf{v}, l, h, p, \sigma$; called hints.

Distribution Hints:

$$\langle \mathbf{v}, \mathbf{x} \rangle \sim \mathcal{D}$$

for known vector \mathbf{v} , distribution \mathcal{D} , and secret \mathbf{x} .

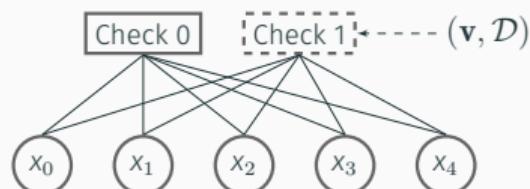

The definition:

- Generalizes all but one previous hints.
- Complements lattice-based frameworks.

Solver for Distribution Hints

We present two solvers working on distribution hints.

Belief propagation-based solver:


Update for $x_j = x'_j$ where $s_j = \sum_{i \neq j} v_i x_i$:

$$P(x_j = x'_j) = \sum_{a \in \text{supp } \mathcal{D}} P_{\mathcal{D}}(a) P(s_j = a - v_j x'_j)$$

Solver for Distribution Hints

We present two solvers working on distribution hints.

Belief propagation-based solver:

Represent unknown key coefficients

Update for $x_j = x'_j$ where $s_j = \sum_{i \neq j} v_i x_i$:

$$P(x_j = x'_j) = \sum_{a \in \text{supp } \mathcal{D}} P_{\mathcal{D}}(a) P(s_j = a - v_j x'_j)$$

Greedy solver:

Compute change scores for coefficients j :

$$s_j(c) = \sum_{a \in \text{supp } \mathcal{D}} P_{\mathcal{D}}(a) |\mathbf{v}^\top \mathbf{x}' + v_j c - a|,$$

and perform k best updates on guess \mathbf{x}' .

$P(s_j = a - v_j x'_j)$ replaced by $|\mathbf{v}^\top \mathbf{x}' + v_j c - a|$.

Side-Channel Attacks on Masked ML-DSA

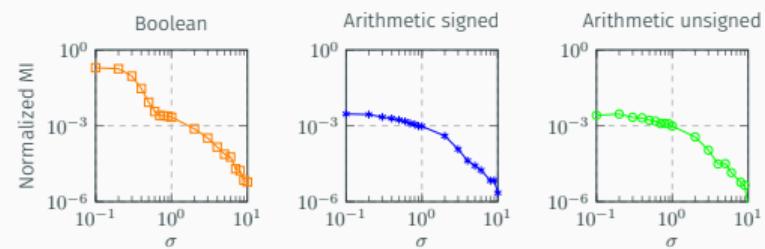
A more conceptual approach to side-channel attacks.

Masked ML-DSA:

- Different types of masking.
- Choice of signed and unsigned integers.
- Several attacks on unmasked ML-DSA.

How to target masked ML-DSA?

Side-Channel Attacks on Masked ML-DSA


A more conceptual approach to side-channel attacks.

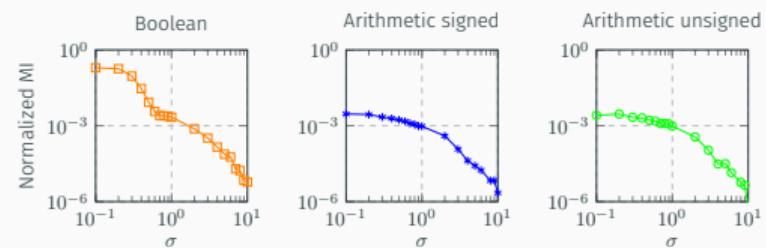
Masked ML-DSA:

- Different types of masking.
- Choice of signed and unsigned integers.
- Several attacks on unmasked ML-DSA.

How to target masked ML-DSA?

Mutual information per measurement:

Side-Channel Attacks on Masked ML-DSA


A more conceptual approach to side-channel attacks.

Masked ML-DSA:

- Different types of masking.
- Choice of signed and unsigned integers.
- Several attacks on unmasked ML-DSA.

How to target masked ML-DSA?

Mutual information per measurement:

Our framework can be applied with hint-filtering technique.

Future Directions

Real-world security largely an open question.

- Improved cryptanalysis under side-information.
- Non-standard side-channel.
- Impacts of leakage on protocol level.
- Conceptual information-theoretic approaches to (previous) attacks.
- Formal models/verification.
- Other PQC schemes.
- Cryptanalysis.
- ...

Future Directions

Real-world security largely an open question.

- Improved cryptanalysis under side-information.
- Non-standard side-channel.
- Impacts of leakage on protocol level.
- Conceptual information-theoretic approaches to (previous) attacks.
- Formal models/verification.
- Other PQC schemes.
- Cryptanalysis.
- ...

Why Birmingham?

- **Elisabeth Oswald:** side-channel analysis and applied cryptography
- **David Oswald:** embedded security and side-channel analysis.
- **Christophe Petit:** cryptanalysis and isogeny-based cryptography.
- **Mihai Ordean:** system security, protocol security and privacy.
- ...

Future Directions

Real-world security largely an open question.

- Improved cryptanalysis under side-information.
- Non-standard side-channel.
- Impacts of leakage on protocol level.
- Conceptual information-theoretic approaches to (previous) attacks.
- Formal models/verification.
- Other PQC schemes.
- Cryptanalysis.
- ...

Why Birmingham?

- **Elisabeth Oswald**: side-channel analysis and applied cryptography
- **David Oswald**: embedded security and side-channel analysis.
- **Christophe Petit**: cryptanalysis and isogeny-based cryptography.
- **Mihai Ordean**: system security, protocol security and privacy.
- ...

Thank you for your attention!